序贯模型(Sequential) 序贯模型是多个网络层的线性堆叠. 可以通过向Sequential模型传递一个layer的list来构造该模型: from Keras.models import Sequential from Keras.layers import Dense,Activation model = Sequential([Dense(32,units=784),Activation('relu'),Dense(10),Activation('softmax'),]) 也可以通过
一.模型的保存,主要是我们在训练完成的时候把训练下来的数据保存下来,这个也就是我们后续需要使用的模型算法.模型的加载,在保存好的模型上面我们通过原生保存好的模型,去计算新的数据,这样不用每次都要去训练,然后才能计算新的值的预测值. 二.代码 from sklearn.datasets import load_iris from sklearn.model_selection import GridSearchCV, train_test_split from sklearn.neighbors
import numpy as np import matplotlib.pyplot as plt from sklearn.svm import LinearSVC from sklearn.datasets import load_digits from sklearn.model_selection import learning_curve #模型选择学习曲线learning_curve模型 def test_learning_curve(): ### 加载数据 digits = lo