由于直方图受组距(bin size)影响很大,设置不同的组距可能会产生完全不同的可视化结果.因此我们可以用密度平滑估计来更好地反映数据的真实特征.具体可参见这篇文章:https://blog.csdn.net/unixtch/article/details/78556499. 还是用我们自己创建的一组符合正态分布的数据来画图. 准备工作:先导入matplotlib,seaborn和numpy,然后创建一个图像和一个坐标轴 import numpy as np from matplotlib im
Python股票数据分析 最近在学习基于python的股票数据分析,其中主要用到了tushare和seaborn.tushare是一款财经类数据接口包,国内的股票数据还是比较全的 官网地址:http://tushare.waditu.com/index.html#id5.seaborn则是一款绘图库,通过seaborn可以轻松地画出简洁漂亮的图表,而且库本身具有一定的统计功能. 导入的模块: import matplotlib.pyplot as plt import seaborn as sn
转摘:https://segmentfault.com/a/1190000015440560 一.数据初探 首先导入要使用的科学计算包numpy,pandas,可视化matplotlib,seaborn,以及机器学习包 import pandas as pd import numpy as np import seaborn as sns import matplotlib as mpl import matplotlib.pyplot as plt from IPython.display i
背景: 2019年初由于尚未学习量子力学相关知识,所以处于自学阶段.浅显的学习了曾谨言的量子力学一卷和格里菲斯编写的量子力学教材.注重将量子力学的一些基本概念了解并理解.同时老师向我们推荐了Quantum Computation and Quantum Information 这本教材,了解了量子信息相关知识. 2019年暑假开始量子力学课程的学习,在导师的推荐下,从APS(美国物理学会)和AIP(美国物理联合会)下载了与量子纠缠(Quantum Discord)相关的著名的文献和会议报告,了解
数据初探 首先导入要使用的科学计算包numpy,pandas,可视化matplotlib,seaborn,以及机器学习包sklearn. python学习交流群:660193417### import pandas as pd import numpy as np import seaborn as sns import matplotlib as mpl import matplotlib.pyplot as plt from IPython.display import display pl