第一张图包括8层LeNet5卷积神经网络的结构图,以及其中最复杂的一层S2到C3的结构处理示意图. 第二张图及第三张图是用tensorflow重写LeNet5网络及其注释. 这是原始的LeNet5网络: import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import time # 声明输入图片数据,类别 x = tf.placeholder('float', [None, 784]
BP神经网络的手写数字识别 ANN 人工神经网络算法在实践中往往给人难以琢磨的印象,有句老话叫“出来混总是要还的”,大概是由于具有很强的非线性模拟和处理能力,因此作为代价上帝让它“黑盒”化了.作为一种general purpose的学**算法,如果你实在不想去理会其他类型算法的理论基础,那就请使用ANN吧.本文为笔者使用BP神经网络进行手写数字识别的整体思路和算法实现,由于近年来神经网络在深度学**,尤其是无监督特征学**上的成功,理解神经网络的实现机制也许可以让“黑盒”变得不再神秘. 首先,作
记得第一次接触手写数字识别数据集还在学习TensorFlow,各种sess.run(),头都绕晕了.自从接触pytorch以来,一直想写点什么.曾经在2017年5月,Andrej Karpathy发表的一篇Twitter,调侃道:l've been using PyTorch a few months now, l've never felt better, l've more energy.My skin is clearer. My eye sight has improved.确实,使用p