转自:https://blog.csdn.net/fendouaini/article/details/79821852 1 词向量 在NLP里,最细的粒度是词语,由词语再组成句子,段落,文章.所以处理NLP问题时,怎么合理的表示词语就成了NLP领域中最先需要解决的问题. 因为语言模型的输入词语必须是数值化的,所以必须想到一种方式将字符串形式的输入词语转变成数值型.由此,人们想到了用一个向量来表示词组.在很久以前,人们常用one-hot对词组进行编码,这种编码的特点是,对于用来表示每个词组的向量