https://blog.csdn.net/confuciust/article/details/78982264 在终端执行程序时指定GPU CUDA_VISIBLE_DEVICES=1 python your_file.py 这样在跑你的网络之前,告诉程序只能看到1号GPU,其他的GPU它不可见 可用的形式如下: CUDA_VISIBLE_DEVICES=1 Only device 1 will be seen CUDA_VISIBLE_DEVICES=0,1 Devices 0 and 1
如果你用的 Keras 或者 TensorFlow, 请移步 怎么查看keras 或者 tensorflow 正在使用的GPU In [1]: import torch In [2]: torch.cuda.current_device() Out[2]: 0 In [3]: torch.cuda.device(0) Out[3]: <torch.cuda.device at 0x7efce0b03be0> In [4]: torch.cuda.device_count() Out[4]: 1
import tensorflow as tffrom keras.backend.tensorflow_backend import set_session config = tf.ConfigProto()config.gpu_options.allocator_type = 'BFC' #A "Best-fit with coalescing" algorithm, simplified from a version of dlmalloc.config.gpu_options