整理一下看到的自定义数据读取的方法,较好的有一下三篇文章, 其实自定义的方法就是把现有数据集的train和test分别用 含有图像路径与label的list返回就好了,所以需要根据数据集随机应变. 所有图片都在一个文件夹1 之前刚开始用的时候,写Dataloader遇到不少坑.网上有一些教程 分为all images in one folder 和 each class one folder.后面的那种写的人比较多,我写一下前面的这种,程式化的东西,每次不同的任务改几个参数就好. 等训练的时候写
[学习源]Tutorials > Deep Learning with PyTorch: A 60 Minute Blitz > Training a Classifier 本文相当于对上面链接教程中自认为有用部分进行的截取.翻译和再注释.便于日后复习.修正和补充. 边写边查资料的过程中猛然发现这居然有中文文档--不过中文文档也是志愿者翻译的,仅仅是翻译,也没有对知识点的扩充,不耽误我写笔记.这篇笔记就继续写下去吧.附PyTorch 中文教程 & 文档 > 训练分类器 一.准