import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.autograd import Variable import torch class Net(nn.Module): # 需要继承这个类 def __init__(self): super(Net, self).__init__() # 建立了两个卷积层,self.conv1, self.conv2,注意,这些
pytorch固定部分参数 不用梯度 如果是Variable,则可以初始化时指定 j = Variable(torch.randn(5,5), requires_grad=True) 但是如果是m = nn.Linear(10,10)是没有requires_grad传入的 for i in m.parameters(): i.requires_grad=False 另外一个小技巧就是在nn.Module里,可以在中间插入这个 for p in self.parameters(): p.requi
In situation of finetuning, parameters in backbone network need to be frozen. To achieve this target, there are two steps. First, locate the layers and change their requires_grad attributes to be False. for param in net.backbone.parameters(): param.r
KDL(Kinematics and Dynamics Library)中定义了一个树来代表机器人的运动学和动力学参数,ROS中的kdl_parser提供了工具能将机器人描述文件URDF转换为KDL tree. Kinematic Trees: 链或树形结构.已经有多种方式来定义机构的运动学结构,KDL使用图论中的术语来定义: A closed-loop mechanism is a graph, 闭链机构是一幅图 an open-loop mechanism is a tree, 开链机构是