一.RNN基本结构 普通神经网络不能处理时间序列的信息,只能割裂的单个处理,同时普通神经网络如果用来处理文本信息的话,参数数目将是非常庞大,因为如果采用one-hot表示词的话,维度非常大. RNN可以解决这两个问题: 1)RNN属于循环神经网络,当从左到右读取文本信息的时候,上一时刻的状态输出可以传递到下一时刻,例如上图的a表示状态,a(1)向下传递,这样就考虑了前面的信息,如果是双向RNN的话,上下文都考虑进去了. 2)RNN参数是共享的.为方便理解,上述图示是展开的RNN结构,其实RNN只