Prepare the data 数据来自UCIhttp://archive.ics.uci.edu/ml/machine-learning-databases/credit-screening,一个信a用卡的数据,具体各项变量名以及变量名代表的含义不明(应该是出于保护隐私的目的),本文会用logit,GBM,knn,xgboost来对数据进行分类预测,对比准确率 预计的准确率应该是: xgboost > GBM > logit > knn Download the data datas
说明 在前一篇中,我们介绍了 R 语言和 R Studio 的安装,并简单的介绍了一个示例,接下来让我们由浅入深的学习 R 语言的相关知识. 本篇将主要介绍 R 语言的基本操作.变量和几种基本数据类型,好对 R 语言的使用方法有一个基本的概念.通过本篇的学习,你将了解到: R 语言有哪些基本操作 什么是变量,以及如何给变量赋值 R 语言有哪些基本数据类型,如何确定变量的数据类型 R 语言的基本操作 R 语言的默认提示符是 > ,它表示正在等待输入命令,每次输入命令后敲击回车即可执行当前命令. R
针对课件中的例子自己实现k-means算法 调用R语言自带kmeans()对给定数据集表示的文档进行聚类. 给定数据集: a) 数据代表的是文本信息. b) 第一行代表词语,由于保密原因,词语已经被转意.第一列代表了文本的编号. c) 红框中的数字为对应词的词频. 共113个样本,用K-Means算法将样本分为8类. 1.针对课件中的例子自己实现k-means算法 rm(list=ls()) #导入数据 id<-c(1:8) x<-c(1,2,1,