首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
R语言如何求犯第一类错误的概率
2024-11-07
R语言基础
一.扩展包的基本操作语句R安装好之后,默认自带了"stats" "graphics" "grDevices" "utils" "datasets" "methods" "base"这七个包,这七个包是不允许被卸载和删除的.1.扩展包的安装install.packages("扩展包名称") 也可以在手动安装,所有的安装包都可以在网站https:/
R 语言实现求导
前言 高等数学是每个大学生都要学习的一门数学基础课,同时也可能是考完试后最容易忘记的一门知识.我在学习高数的时候绞尽脑汁,但始终都不知道为何而学.生活和工作基本用不到,就算是在计算机行业和金融行业,能直接用到高数的地方也少之又少,学术和实际应用真是相差太远了. 不过,R语言为我打开了一道高数应用的大门,R语言不仅能方便地实现高等数学的计算,还可以很容易地把一篇论文中的高数公式应用于产品的实践中.因为R语言我重新学习了高数,让生活中充满数学,生活会变得更有意思. 本节并不是完整的高数计算手册,仅介
[转]概率基础和R语言
概率基础和R语言 R的极客理想系列文章,涵盖了R的思想,使用,工具,创新等的一系列要点,以我个人的学习和体验去诠释R的强大. R语言作为统计学一门语言,一直在小众领域闪耀着光芒.直到大数据的爆发,R语言变成了一门炙手可热的数据分析的利器.随着越来越多的工程背景的人的加入,R语言的社区在迅速扩大成长.现在已不仅仅是统计领域,教育,银行,电商,互联网….都在使用R语言. 要成为有理想的极客,我们不能停留在语法上,要掌握牢固的数学,概率,统计知识,同时还要有创新精神,把R语言发挥到各个领域.让我们一起
R语言与显著性检验学习笔记
R语言与显著性检验学习笔记 一.何为显著性检验 显著性检验的思想十分的简单,就是认为小概率事件不可能发生.虽然概率论中我们一直强调小概率事件必然发生,但显著性检验还是相信了小概率事件在我做的这一次检验中没有发生. 显著性检验即用于实验处理组与对照组或两种不同处理的效应之间是否有差异,以及这种差异是否显著的方法. 常把一个要检验的假设记作H0,称为原假设(或零假设),与H0对立的假设记作H1,称为备择假设. ⑴在原假设为真时,决定放弃原假设,称为第一类错误,其出现的概率通常记作α: ⑵在原假设不真
R语言-组间差异的非参数检验
R语言-组间差异的非参数检验 7.5 组间差异的非参数检验 如果数据无法满足t检验或ANOVA的参数假设,可以转而使用非参数方法.举例来说,若结果变量在本质上就严重偏倚或呈现有序关系,那么你可能会希望使用本节中的方法. 7.5.1 两组的比较 若两组数据独立,可以使用Wilcoxon秩和检验(更广为人知的名字是Mann–Whitney U检验)来评估观测是否是从相同的概率分布中抽得的(即,在一个总体中获得更高得分的概率是否比另一个总体要大).调用格式为: 其中的y是数值型变量,而x是一个二分变量
【数据分析 R语言实战】学习笔记 第八章 方差分析与R实现
方差分析泛应用于商业.经济.医学.农业等诸多领域的数量分析研究中.例如商业广告宣传方面,广告效果可能会受广告式.地区规模.播放时段.播放频率等多个因素的影响,通过方差分析研究众多因素中,哪些是主要的以及如何产生影响等.而在经济管理中,方差分析常用于分析变量之间的关系,如人民币汇率对股票收益率的影响.存贷款利率对债券市场的影响,等等. 协方差是在方差分析的基础上,综合回归分析的方法,研究如何调节协变量对因变量的影响效应,从而更加有效地分析实验处理效应的一种统计技术. 8.1单因素方差分析及R实现
R语言做相关性分析
衡量随机变量相关性的方法主要有三种:pearson相关系数,spearman相关系数,kendall相关系数: 1. pearson相关系数,亦即皮尔逊相关系数 pearson相关系数用来衡量两个随机变量之间的相关性 R语言中求两个随机变量pearson相关系数的函数: 1//赋予a,b向量值 2a<-c(1,2,3) 3b<-c(11,12,14) 4 5//计算pearson相关系数 6cor.test(a,b,method="pearson") 结果 Pe
R语言结合概率统计的体系分析---数字特征
现在有一个人,如何对这个人怎么识别这个人?那么就对其存在的特征进行提取,比如,提取其身高,其相貌,其年龄,分析这些特征,从而确定了,这个人就是这个人,我们绝不会认错. 同理,对数据进行分析,也是提取出数据的特征,对其特征进行分析,从而确定这些数据所呈现的信息状况,从而确定了这些数据的独特性和唯一性,因为他呈现的信息是唯一的,绝不与别的是相同的. 那么这些特征是什么呢?拥有哪些特征呢?似乎应该是经过无数科学家的总结,终于发现了几个重要的特征,包括数字特征和分布特征,这个数字特征,包括集中位置,分散
R和python语言如何求平均值,中位数和众数
均值是通过取数值的总和并除以数据序列中的值的数量来计算. R语言平均值公式: mean(x, trim = 0, na.rm = FALSE, ...)#x - 是输入向量.trim - 用于从排序的向量的两端删除一些观测值.na.rm - 用于从输入向量中删除缺少的值 > x<-c(-22,-13,2,45,56,73,21,44,NA)> result.mean<-mean(x,rim=0.2,na.rm=TRUE)#rim=0.2就是对x其中的向量排序,然后去掉左边和右边的各
R语言两种方式求指定日期所在月的天数
R语言两种方式求指定日期所在月的天数 days_monthday<-function(date){ m<-format(date,format="%m") days31<-c("01","03","05","07","08","10","12") days30<-c("04",&
R语言与概率统计(二) 假设检验
> ####################5.2 > X<-c(159, 280, 101, 212, 224, 379, 179, 264, + 222, 362, 168, 250, 149, 260, 485, 170) > t.test(X,alternative='greater',mu=225,conf.level = 0.95)#单边检验 One Sample t-test data: X t = 0.66852, df = 15, p-value = 0.257
R语言与概率统计(一) 描述性统计分析
#查看已安装的包,查看已载入的包,查看包的介绍 ########例题3.1 #向量的输入方法 w<-c(75.0, 64.0, 47.4, 66.9, 62.2, 62.2, 58.7, 63.5, 66.6, 64.0, 57.0, 69.0, 56.9, 50.0, 72.0) plot(w)#概况,数据的可视化可以让我们看的更轻松 summary(w) #求均值 w.mean<-mean(w); w.mean w[2]#选取特定位置的数字 #控制异常值,trim表示去掉异常值的比例
用R语言求置信区间
用R语言求置信区间 用R语言求置信区间是很方便的,而且很灵活,至少我觉得比spss好多了. 如果你要求的只是95%的置信度的话,那么用一个很简单的命令就可以实现了 首先,输入da=c(你的数据,用英文逗号分割),然后t.test(da),运行就能得到结果了. 我的数据是newbomb <- c(28,26,33,24,34,-44,27,16,40,-2,29,22,24,21,25,30,23,29,31,19) t.test(newbomb)得到的结果如下 如果要求任意置信度下的置信区间
机器学习-决策树算法+代码实现(基于R语言)
分类树(决策树)是一种十分常用的分类方法.核心任务是把数据分类到可能的对应类别. 他是一种监管学习,所谓监管学习就是给定一堆样本,每个样本都有一组属性和一个类别,这些类别是事先确定的,通过学习得到一个分类器,这个分类器能够对新出现的对象给出正确的分类. 决策树的理解 熵的概念对理解决策树很重要 决策树做判断不是百分之百正确,它只是基于不确定性做最优判断. 熵就是用来描述不确定性的. 案例:找出共享单车用户中的推荐者 解析:求出哪一类人群更可能成为共享单车的推荐者.换句话说是推荐者与其他变量之间不
R语言——七月
这两个月没有写什么代码.也没做什么大项目,基本就是对以前写的那个用ggplot2可视化数据的项目做一些增增补补,大部分技术难关都在ggplot2和R语言EXCEL处理这里解决并总结了.然后业余帮人修改一个用RVEST写的亚马逊简陋爬虫,花了两个周末时间. 就简单记一下最近弄的这个功能块 功能块分区,并自定义 这个是在处理数据的时候,需要对一批有序数字按照累积的概率进行分组,然后划分分组. 主要用到了两个函数:cumsum(求累积分布),cut(划分区间) 如下面的示例函数getInterval,
R语言解读一元线性回归模型
转载自:http://blog.fens.me/r-linear-regression/ 前言 在我们的日常生活中,存在大量的具有相关性的事件,比如大气压和海拔高度,海拔越高大气压强越小:人的身高和体重,普遍来看越高的人体重也越重.还有一些可能存在相关性的事件,比如知识水平越高的人,收入水平越高:市场化的国家经济越好,则货币越强势,反而全球经济危机,黄金等避险资产越走强. 如果我们要研究这些事件,找到不同变量之间的关系,我们就会用到回归分析.一元线性回归分析是处理两个变量之间关系的最简单模型,是
R 语言机器学习同步推进~
教材就是传说中的机器学习和R语言--中文版,大家可以去图书馆借来看看~~~,例子都是来自书上的 首先介绍一下KNN算法,KNN还好吧,说白了就是一个算距离的公式然后以统计的方式呈现出来,以二维平面为例,平面内已知n个区域,每个区域里面有m(n)个点,现在求一个不在n区域内的点与哪一个区域最近,额,为了"恰当",考虑较远的点的影响会覆盖较近点的影响和没有意义的重复计算,只取k(k<n)个较近点参与计算,这就是这个方法的原理了,简单粗暴~~问题还有就是在数据很大的时候怎么选取K值,书
数据分析与R语言
数据结构 创建向量和矩阵 函数c(), length(), mode(), rbind(), cbind() 求平均值,和,连乘,最值,方差,标准差 函数mean(), sum(), min(), max(), var(), sd(), prod() 帮助文档 函数help() 生成向量 seq() 生成字母序列letters 新建向量 Which()函数,rev()函数,sort()函数 生成矩阵 函数matrix() 矩阵运算 函数t(),矩阵加减 矩阵运算 矩阵相乘,函数diag() 矩阵
R语言︱贝叶斯网络语言实现及与朴素贝叶斯区别(笔记)
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 一.贝叶斯网络与朴素贝叶斯的区别 朴素贝叶斯的假设前提有两个第一个为:各特征彼此独立:第二个为且对被解释变量的影响一致,不能进行变量筛选.但是很多情况这一假设是无法做到的,比如解决文本分类时,相邻词的关系.近义词的关系等等.彼此不独立的特征之间的关系没法通过朴素贝叶斯分类器训练得到,同时这种不独立性也给问题的解决方案引入了更多的复杂性[1].
重磅︱文本挖掘深度学习之word2vec的R语言实现
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:2013年末,Google发布的 word2vec工具引起了一帮人的热捧,大家几乎都认为它是深度学习在自然语言领域的一项了不起的应用,各种欢呼"深度学习在自然语言领域开始发力 了". 基于word2vec现在还出现了doc2vec,word2vec相比传统,考虑单词上下文的语义:但是doc2vec不仅考虑了单词上下文的语义,
热门专题
es6 结构赋值 别名
python3.8 pathlib Path上级目录
如何把附件嵌入html邮件
--sync c语言
flask做好的网页放哪里
sublime 怎么查看html图片
淘宝怎么 激活IntelliJ自己账号
asp怎么让控件对齐
执行sh文件can not open
第一行代码android第3版 电子版
5500 phy功能
Krypton使用案例
把磁盘软链接到home下
xml 生成schema C
esp8266判断电平
查多次数据库跟join多次相比
field在ant-dv是什么
linux备份网络配置
串口显示波形SerialChart
pg数据库怎么导出数据