在配置训练.验证.和测试数据集的过程中做出正确的决策会更好地创建高效的神经网络,所以需要对这三个名词有一个清晰的认识. 训练集:用来训练模型 验证集:用于调整模型的超参数,验证不同算法,检验哪种算法更有效 测试集:根据最终的分类器,正确评估分类器的性能 假设这是训练数据,用一个长方形表示,通常会把这些数据划分成几部分,一部分作为训练集,一部分作为简单交叉验证集,也称之为验证集,最后一部分则作为测试集. train dev test 如果数据只有100条,100条或者1万条,通常将样本集设置为70
Data Frame一般被翻译为数据框,感觉就像是R中的表,由行和列组成,与Matrix不同的是,每个列可以是不同的数据类型,而Matrix是必须相同的. Data Frame每一列有列名,每一行也可以指定行名.如果不指定行名,那么就是从1开始自增的Sequence来标识每一行. 初始化 使用data.frame函数就可以初始化一个Data Frame.比如我们要初始化一个student的Data Frame其中包含ID和Name还有Gender以及Birthdate,那么代码为: studen
Data Frame一般被翻译为数据框,感觉就像是R中的表,由行和列组成,与Matrix不同的是,每个列可以是不同的数据类型,而Matrix是必须相同的. Data Frame每一列有列名,每一行也可以指定行名.如果不指定行名,那么就是从1开始自增的Sequence来标识每一行. 初始化 使用data.frame函数就可以初始化一个Data Frame.比如我们要初始化一个student的Data Frame其中包含ID和Name还有Gender以及Birthdate,那么代码为: studen