首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
r语言微生物随机森林roc曲线
2024-11-05
R语言︱ROC曲线——分类器的性能表现评价
笔者寄语:分类器算法最后都会有一个预测精度,而预测精度都会写一个混淆矩阵,所有的训练数据都会落入这个矩阵中,而对角线上的数字代表了预测正确的数目,即True Positive+True Nagetive. -------------------------- 相关内容: 1. R语言︱ROC曲线--分类器的性能表现评价 2.机器学习中的过拟合问题 3.R语言︱机器学习模型评估方案(以随机森林算法为例) -------------------------- 1.TPR与TNR 同时可以相应算出TP
R语言︱机器学习模型评估方案(以随机森林算法为例)
笔者寄语:本文中大多内容来自<数据挖掘之道>,本文为读书笔记.在刚刚接触机器学习的时候,觉得在监督学习之后,做一个混淆矩阵就已经足够,但是完整的机器学习解决方案并不会如此草率.需要完整的评价模型的方式. 常见的应用在监督学习算法中的是计算平均绝对误差(MAE).平均平方差(MSE).标准平均方差(NMSE)和均值等,这些指标计算简单.容易理解:而稍微复杂的情况下,更多地考虑的是一些高大上的指标,信息熵.复杂度和基尼值等等. 本篇可以用于情感挖掘中的监督式算法的模型评估,可以与博客对着看:R语言
R语言︱决策树族——随机森林算法
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:有一篇<有监督学习选择深度学习还是随机森林或支持向量机?>(作者Bio:SebastianRaschka)中提到,在日常机器学习工作或学习中,当我们遇到有监督学习相关问题时,不妨考虑下先用简单的假设空间(简单模型集合),例如线性模型逻辑回归.若效果不好,也即并没达到你的预期或评判效果基准时,再进行下换其他更复杂模型来实验. ----
R语言分类算法之随机森林
R语言分类算法之随机森林 1.原理分析: 随机森林是通过自助法(boot-strap)重采样技术,从原始训练样本集N中有放回地重复随机抽取k个样本生成新的训练集样本集合,然后根据自助样本集生成k个决策树组成的随机森林,新数据的分类结果按照决策树投票多少形成的分数而定. 通俗的理解为由许多棵决策树组成的森林,而每个样本需要经过每棵树进行预测,然后根据所有决策树的预测结果最后来确定整个随机森林的预测结果.随机森林中的每一颗决策树都为二叉树,其生成遵循自顶向下的递归分裂原则,即从根节点开始依次对训练集
R语言之Random Forest随机森林
什么是随机森林? 随机森林就是通过集成学习的思想将多棵树集成的一种算法,它的基本单元是决策树,而它的本质属于机器学习的一大分支——集成学习(Ensemble Learning)方法.随机森林的名称中有两个关键词,一个是“随机”,一个就是“森林”.“森林”我们很好理解,一棵叫做树,那么成百上千棵就可以叫做森林了,这样的比喻还是很贴切的,其实这也是随机森林的主要思想--集成思想的体现. 随机森林算法的实质是基于决策树的分类器集成算法,其中每一棵树都依赖于一个随机向量,随机森林的所有向量都是独立同分布
【R语言学习笔记】 Day1 CART 逻辑回归、分类树以及随机森林的应用及对比
1. 目的:根据人口普查数据来预测收入(预测每个个体年收入是否超过$50,000) 2. 数据来源:1994年美国人口普查数据,数据中共含31978个观测值,每个观测值代表一个个体 3. 变量介绍: (1)age: 年龄(以年表示) (2)workclass: 工作类别/性质 (e.g., 国家机关工作人员.当地政府工作人员.无收入人员等) (3)education: 受教育水平 (e.g., 小学.初中.高中.本科.硕士.博士等) (4)maritalstatus: 婚姻状态(e.g., 未婚
【R语言进行数据挖掘】决策树和随机森林
1.使用包party建立决策树 这一节学习使用包party里面的函数ctree()为数据集iris建立一个决策树.属性Sepal.Length(萼片长度).Sepal.Width(萼片宽度).Petal.Length(花瓣长度)以及Petal.Width(花瓣宽度)被用来预测鸢尾花的Species(种类).在这个包里面,函数ctree()建立了一个决策树,predict()预测另外一个数据集. 在建立模型之前,iris(鸢尾花)数据集被分为两个子集:训练集(70%)和测试集(30%).使用随机种
笔记+R︱风控模型中变量粗筛(随机森林party包)+细筛(woe包)
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 本内容来源于CDA-DSC课程内容,原内容为<第16讲 汽车金融信用违约预测模型案例>. 建立违约预测模型的过程中,变量的筛选尤为重要.需要经历多次的筛选,在课程案例中通过了随机森林进行变量的粗筛,通过WOE转化+决策树模型进行变量细筛. 一.变量粗筛--随机森林模型 与randomForest包不同之处在于,party可以处理缺失值,而这个
(数据科学学习手札26)随机森林分类器原理详解&Python与R实现
一.简介 作为集成学习中非常著名的方法,随机森林被誉为“代表集成学习技术水平的方法”,由于其简单.容易实现.计算开销小,使得它在现实任务中得到广泛使用,因为其来源于决策树和bagging,决策树我在前面的一篇博客中已经详细介绍,下面就来简单介绍一下集成学习与Bagging: 二.集成学习 集成学习(ensemble learning)是指通过构建并结合多个学习器来完成学习任务,有时也被称为多分类器系统(multi-classifier system)等: 集成学习的一般结构如下: 可以看出,集成
R语言︱线性混合模型理论与案例探究(固定效应&随机效应)
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 线性混合模型与普通的线性模型不同的地方是除了有固定效应外还有随机效应. 笔者认为一般统计模型中的横截面回归模型中大致可以分为两个方向:一个是交互效应方向(调节.中介效应).一个是随机性方向(固定效应.随机效应). 两个方向的选择需要根据业务需求: 交互效应较多探究的是变量之间的网络关系,可能会有很多变量,多变量之间的关系: 而随机性探究的是变量
R包 randomForest 进行随机森林分析
randomForest 包提供了利用随机森林算法解决分类和回归问题的功能:我们这里只关注随机森林算法在分类问题中的应用 首先安装这个R包 install.packages("randomForest") 安装成功后,首先运行一下example library(randomForset) ?randomForset 通过查看函数的帮助文档,可以看到对应的example data(iris) set.seed(71) iris.rf <- randomForest(Species
随机森林入门攻略(内含R、Python代码)
随机森林入门攻略(内含R.Python代码) 简介 近年来,随机森林模型在界内的关注度与受欢迎程度有着显著的提升,这多半归功于它可以快速地被应用到几乎任何的数据科学问题中去,从而使人们能够高效快捷地获得第一组基准测试结果.在各种各样的问题中,随机森林一次又一次地展示出令人难以置信的强大,而与此同时它又是如此的方便实用. 需要大家注意的是,在上文中特别提到的是第一组测试结果,而非所有的结果,这是因为随机森林方法固然也有自己的局限性.在这篇文章中,我们将向你介绍运用随机森林构建预测模型时最令人感兴趣
R语言绘图:ROC曲线图
使用pROC包绘制ROC曲线 #####***绘制ROC曲线***##### library("pROC") N <- dim(data2)[1] #数据长度 set.seed(1234) #设置随机种子 ind <- sample(2, N, replace=TRUE, prob = c(0.8,0.2)) data_train <- data2[ind == 1,] #生成训练集 data_test <- data2[ind == 2,] #生成测试集 re
Mean Average Precision(mAP),Precision,Recall,Accuracy,F1_score,PR曲线、ROC曲线,AUC值,决定系数R^2 的含义与计算
背景 之前在研究Object Detection的时候,只是知道Precision这个指标,但是mAP(mean Average Precision)具体是如何计算的,暂时还不知道.最近做OD的任务迫在眉睫,所以仔细的研究了一下mAP的计算.其实说实话,mAP的计算,本身有很多现成的代码可供调用了,公式也写的很清楚,但是我认为仔细的研究清楚其中的原理更重要. AP这个概念,其实主要是在信息检索领域(information retrieval)中的概念,所以这里会比较快速的过一下这个在信息
R随机森林交叉验证 + 进度条
library(data.table) library(randomForest) data <- iris str(data) #交叉验证,使用rf预测sepal.length k = 5 data$id <- sample(1:k, nrow(data), replace = TRUE) list <- 1:k # 每次迭代的预测用数据框,测试用数据框 # the folds prediction <- data.table() testsetCopy <- data.t
美团店铺评价语言处理以及分类(tfidf,SVM,决策树,随机森林,Knn,ensemble)
第一篇 数据清洗与分析部分 第二篇 可视化部分, 第三篇 朴素贝叶斯文本分类 支持向量机分类 支持向量机 网格搜索 临近法 决策树 随机森林 bagging方法 import pandas as pd import numpy as np import matplotlib.pyplot as plt import time df=pd.read_excel("all_data_meituan.xlsx")[["comment","star"]]
R语言绘图:ggplot2绘制ROC
使用ggplot2包绘制ROC曲线 rocplot<- function(pred, truth, ...){ predob<- prediction(pred, truth) #打印AUc perf.auc<- performance(predob, measure = 'auc', x.measure = 'cutoff') # perf<- performance(predob, 'tpr','fpr') df<- data.frame(x = attributes(p
R语言︱机器学习模型评价指标+(转)模型出错的四大原因及如何纠错
笔者寄语:机器学习中交叉验证的方式是主要的模型评价方法,交叉验证中用到了哪些指标呢? 交叉验证将数据分为训练数据集.测试数据集,然后通过训练数据集进行训练,通过测试数据集进行测试,验证集进行验证. 模型预测效果评价,通常用相对绝对误差.平均绝对误差.根均方差.相对平方根误差等指标来衡量. 只有在非监督模型中才会选择一些所谓"高大上"的指标如信息熵.复杂度和基尼值等等. 其实这类指标只是看起来老套但是并不"简单",<数据挖掘之道>中认为在监控.评估监督模型
R语言︱常用统计方法包+机器学习包(名称、简介)
一.一些函数包大汇总 转载于:http://www.dataguru.cn/thread-116761-1-1.html 时间上有点过期,下面的资料供大家参考基本的R包已经实现了传统多元统计的很多功能,然而CRNA的许多其它包提供了更深入的多元统计方法,下面要综述的包主要分为以下几个部分: 1) 多元数据可视化(Visualising multivariate data): 绘图方法: 基本画图函数(如:pairs().coplot())和 lattice包里的画图函数(xyplot().spl
用R语言实现对不平衡数据的四种处理方法
https://www.weixin765.com/doc/gmlxlfqf.html 在对不平衡的分类数据集进行建模时,机器学**算法可能并不稳定,其预测结果甚至可能是有偏的,而预测精度此时也变得带有误导性那么,这种结果是为何发生的呢?到底是什么因素影响了这些算法的表现? 在不平衡的数据中,任一算法都没法从样本量少的类中获取足够的信息来进行精确预测因此,机器学**算法常常被要求应用在平衡数据集上那我们该如何处理不平衡数据集?本文会介绍一些相关方法,它们并不复杂只是技巧性比较强 本文会介绍处理非
热门专题
解决maven打包时出现编码utf-8的不可映射字段
sql count一段时间的数据,怎么按天展现
egret 绘制一个五边形
make menuconfig 自制
水平线的html标签
Cesium 对shp数据的控制
Qtcreator 弹出console
process on 软件里如何粘贴文字
.start_java.sh.swp 可以删么
html5plus撖寡情
QSettings缓存
web-view展示在遮罩层中
java分支覆盖测试
oracle监控用户权限
expressvpn添加静态路由表
oracle 报Communications link
.NET Framework 支持 asp.net网站
centos网卡如何配置xor模式
idm 自动下载cab
win11 IIS 服务异常500.19怎么解决