首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
R语言按照两条件对数据进行行拆分
2024-09-07
R中根据匹配原则将一列拆分为几列的方法
例如我们需要将一下数据的第二列从and处拆分为两列: before = data.frame(attr = c(1,30,4,6), type=c('foo_and_bar','foo_and_bar_2')) attr type 1 1 foo_and_bar 2 30 foo_and_bar_2 3 4 foo_and_bar 4 6 foo_and_bar_2 ==> attr type_1 type_2 1 1 foo bar 2 30 foo bar_2 3 4 foo bar 4 6
【R笔记】R语言进阶之4:数据整形(reshape)
R语言进阶之4:数据整形(reshape) 2013-05-31 10:15 xxx 网易博客 字号:T | T 从不同途径得到的数据的组织方式是多种多样的,很多数据都要经过整理才能进行有效的分析,数据整形不仅仅是为了改善数据的外观,也是进行一些统计分析和作图前必要的步骤.数据整形和数据凝练/汇总往往密不可分,这是门学问,是R语言数据处理的内容之一. AD:51CTO技术沙龙 | 赋予APP不同凡响的交互和体验>> 来源: http://developer.51cto.com/art/2013
写论文,没数据?R语言抓取网页大数据
写论文,没数据?R语言抓取网页大数据 纵观国内外,大数据的市场发展迅猛,政府的扶持也达到了空前的力度,甚至将大数据纳入发展战略.如此形势为社会各界提供了很多机遇和挑战,而我们作为卫生(医学)统计领域的一份子,更要把握好机会.放眼全球,大数据的应用规模仍在持续扩张,几乎每个行业都将目光瞄准了大数据背后的巨大价值.未来五到十年,是我国推进大数据发展的关键时期,打造高效的大数据应用机制和产业链迫在眉睫. 空格根据当前大数据行业发展的分析,我们着手大数据不妨从"可视化数据抓取"开始考虑.这里提
R语言进阶之4:数据整形(reshape)
一.通过重新构建数据进行整形 数据整形最直接的思路就把数据全部向量化,然后按要求用向量构建其他类型的数据.这样是不是会产生大量的中间变量.占用大量内存?没错.R语言的任何函数(包括赋值)操作都会有同样的问题,因为R函数的参数传递方式是传值不传址,变量不可能原地址修改后再放回原地址. 矩阵和多维数组的向量化有直接的类型转换函数: as.vector,向量化后的结果顺序是先列后行再其他: > (x <- matrix(1:4, ncol=2)) #为节省空间,下面的结果省略了一些空行 [,1]
大数据基础--R语言(刘鹏《大数据》课后习题答案)
1.R语言是解释性语言还是编译性语言? 解释性语言 2.简述R语言的基本功能. R语言是一套完整的数据处理.计算和制图软件系统,主要包括以下功能: (1)数据存储和处理功能,丰富的数据读取与存储能力,丰富的数据处理功能. (2)数组运算工具 (3)完整连贯的统计分析工具 (4)优秀的统计制图功能 3.R语言通常用在哪些领域? 人工智能.统计分析.应用数学.计量经济.金融分析.财经分析.生物信息学.数据可视化与数据挖掘等. 4.R语言常用的分类和预测算法有哪些? (1)K-近邻算法
吴裕雄--天生自然 R语言开发学习:导入数据
2.3.6 导入 SPSS 数据 IBM SPSS数据集可以通过foreign包中的函数read.spss()导入到R中,也可以使用Hmisc 包中的spss.get()函数.函数spss.get()是对read.spss()的一个封装,它可以为你自动设 置后者的许多参数,让整个转换过程更加简单一致,最后得到数据分析人员所期望的结果. 首先,下载并安装Hmisc包(foreign包已被默认安装): install.packages("Hmisc") 然后使用以下代码导入数据: libr
R语言中两个数组(或向量)的外积怎样计算
所谓数组(或向量)a和b的外积,指的是a的每个元素和b的每个元素搭配在一起相乘得到的新元素.当然运算规则也可自己定义.外积运算符为 %o%(注意:百分号中间的字母是小写的字母o).比如: > a <- 1:2 > b <- 3:5 > d <- a %o% b > d [,1] [,2] [,3] [1,] 3 4 5 [2,] 6 8 10 注意维数公式为: dim(d) = c( dim(a) , dim(b) ) 实际上R语言提供了一个更为一般化得外积函数o
R之data.table -melt/dcast(数据合并和拆分)
p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px "Helvetica Neue"; color: #323333 } p.p2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px "Helvetica Neue"; color: #323333 } p.p3 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px "
R语言-探索两个变量
目的: 通过探索文件pseudo_facebook.tsv数据来学会两个变量的分析流程 知识点: 1.ggplot语法 2.如何做散点图 3.如何优化散点图 4.条件均值 5.变量的相关性 6.子集散点图 7.平滑化 简介: 如果在探索单一变量时,使用直方图来表示该值和整体的关系,那么在探索两个变量的时候,使用散点图会更适合来探索两个变量之间的关系 案例分析: 1.根据年龄和好友数作出散点图 #导入ggplot2绘图包library(ggplot2) setwd('D:/Udacity/数据分析
R语言-来自Prosper的贷款数据探索
案例分析:Prosper是美国的一家P2P在线借贷平台,网站撮合了一些有闲钱的人和一些急用钱的人.用户若有贷款需求,可在网站上列出期望数额和可承受的最大利率.潜在贷方则为数额和利率展开竞价. 本项目拟通过该数据集的探索,结合自己的理解进行分析,最终目的的是初步预测哪些人贷款后会还款.哪些人会赖账. 1.探索数据集 loandata = read.csv("prosperLoanData.csv") str(loandata) 结论:一共有81个变量,113937个对象 2.选择分析的变
如何使用R语言解决可恶的脏数据
转自:http://shujuren.org/article/45.html 在数据分析过程中最头疼的应该是如何应付脏数据,脏数据的存在将会对后期的建模.挖掘等工作造成严重的错误,所以必须谨慎的处理那些脏数据. 脏数据的存在形式主要有如下几种情况: 1)缺失值 2)异常值 3)数据的不一致性 下面就跟大家侃侃如何处理这些脏数据. 一.缺失值 缺失值,顾名思义就是一种数据的遗漏,根据CRM中常见的缺失值做一个汇总: 1)会员信息缺失,如身份证号.手机号.性别.年龄等 2)消费数据缺失,如消费次数.
R语言学习笔记:取数据子集
上文介绍了,如何生成序列,本文介绍一下如何取出其数据子集 取出元素的逻辑值 > x<-c(0,-3,4,-1,45,90,5) > x>0 [1] FALSE FALSE TRUE FALSE TRUE TRUE TRUE 取出符合条件的值的值 > x[x>0] [1] 4 45 90 5 > x[x>5 | x<(-2)] [1] -3 45 90 > x[x>1 & x<20] [1] 4 5 用负号‘-’排除
R语言-来自拍拍贷的数据探索
案例分析:拍拍贷是中国的一家在线借贷平台,网站撮合了一些有闲钱的人和一些急用钱的人.用户若有贷款需求,可在网站上选择借款金额. 本项目拟通过该数据集的探索,结合自己的理解进行分析,最终目的的是初步预测贷款的利率和哪些因素有关. 0.加载包 library(ggplot2) library(gridExtra) library(utf8) library(dplyr) library(tidyr) library(GGally) library(RColorBrewer) library(care
R语言-查找满足条件的数并获取索引
1.在R语言中,怎样找到满足条件的数呢? 比如给定一个向量c2.要求找到数值大于0的数: > c2 [1] 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.09 0.20 0.09 0.08 0.14 0.14 0.23 [15] 0.08 0.06 0.12 0.20 0.14 0.11 0.20 0.14 0.17 0.15 0.18 0.15 0.20 0.12 [29] 0.23 0.08 0.12 0.08 0.23 0.12 0.08 0.17 0.18
R语言操作mysql上亿数据量(ff包ffbase包和ETLUtils包)
平时都是几百万的数据量,这段时间公司中了个大标,有上亿的数据量. 现在情况是数据已经在数据库里面了,需要用R分析,但是完全加载不进来内存. 面对现在这种情况,R提供了ff, ffbase , ETLUtils 的解决方案. 它可以很简单的加载,转换数据库的数据进入R内存,ETLUtils 包现在已经扩展了read.odbc.ffdf 方法用来查询Oracle, MySQL, PostgreSQL & sqlite databases.. 下面我们就来展示一个例子. require(ETLUti
R语言爬虫:使用R语言爬取豆瓣电影数据
豆瓣排名前25电影及评价爬取 url <-'http://movie.douban.com/top250?format=text' # 获取网页原代码,以行的形式存放在web 变量中 web <- readLines(url,encoding="UTF-8") # 找到包含电影名称的行 name <- str_extract_all(string = web, pattern = '<span class="title">.+</
R语言实现两文件对应行列字符替换(解决正负链统一的问题)
假设存在文件file1.xlsx,其内容如下: 存在文件file2.xlsx,其内容如下: 现在我想从第七列开始,将file2所有的字符替换成file1一样的,即第七.八.九.十列不需要改变,因为file1和file2的字符一致的(3和1,2和4):从第11列开始,file1和file2的字符不一样了.我的命名规则是从第11列开始,file2的2改为3,4改1,3改为2,1改为4: 下面是代码的实现过程: install.packages("openxlsx") #安装openxlsx
第二篇:R语言数据可视化之数据塑形技术
前言 绘制统计图形时,半数以上的时间会花在调用绘图命令之前的数据塑型操作上.因为在把数据送进绘图函数前,还得将数据框转换为适当格式才行. 本文将给出使用R语言进行数据塑型的一些基本的技巧,更多技术细节推荐参考<R语言核心手册>. 数据框塑型 1. 创建数据框 - data.frame() # 创建向量p p = c("A", "B", "C") # 创建向量q q = 1:3 # 创建数据框:含p/q两列 dat = data.fra
R语言︱词典型情感分析文本操作技巧汇总(打标签、词典与数据匹配等)
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:情感分析中对文本处理的数据的小技巧要求比较高,笔者在学习时候会为一些小技巧感到头疼不已. 主要包括以下内容: 1.批量读取txt字符文件(导入.文本内容逐行读取.加入文档名字). 2.文本清洗(一级清洗,去标点:二级清洗去内容:三级清洗,去停用词) 3.词典之间匹配(有主键join.词库匹配%in%) 4.分词之后档案id+label
R语言 数据重塑
R语言数据重塑 R语言中的数据重塑是关于改变数据被组织成行和列的方式. 大多数时间R语言中的数据处理是通过将输入数据作为数据帧来完成的. 很容易从数据帧的行和列中提取数据,但是在某些情况下,我们需要的数据帧格式与我们接收数据帧的格式不同. R语言具有许多功能,在数据帧中拆分,合并和将行更改为列,反之亦然. 于数据帧中加入列和行 我们可以使用cbind()函数连接多个向量来创建数据帧. 此外,我们可以使用rbind()函数合并两个数据帧. # Create vector objects. city
R语言学习笔记:读取前n行数据
常规读取 一般我们读取文件时都会读取全部的文件然后再进行操作,因为R是基于内存进行计算的. data <- read.table("C:\\Users\\Hider\\Desktop\\test.txt", header = TRUE, encoding = "gbk") 但是当读取的数据量很大的时候,读取的时间会让人捉急,而且会把内存给占满,读完数据之后就不用进行下一步操作了,因为电脑都卡死了. 所以只读取数据的前n行是一个不错的选择,边读取边进行处理. 读
热门专题
fastjson 构造函数
点击VUE页面窗口左上角返回图标,APP会退出
C#小写数字转大写数字小数点
java获取操作人员的ip地址
K-means聚类代码最详细的解说
c# 多线程 读取控件值
对阿里云rds建读库
markdown 英镑符号
FiddlerA 的过滤功能包括哪些
两个变量用短横连接起来 SAS
wpf ItemContainerStyle 用法
安卓开发 一直弹出reinstall haxm
spring获取虚基类的所有bean
eeglab去眼电后续处理
vs中如何引入Developer Express
pandas计算一万行数据很慢
arcgis导出配色方案
.net swagger 接口菜单分类
H3C 官网debugging
centos用户拥有root权限