首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
R语言时间序列est指数平滑法论文参考文献
2024-11-09
基于R语言的时间序列指数模型
时间序列: (或称动态数列)是指将同一统计指标的数值按其发生的时间先后顺序排列而成的数列.时间序列分析的主要目的是根据已有的历史数据对未来进行预测.(百度百科) 主要考虑的因素: 1.长期趋势(Long-term trend) : 时间序列可能相当稳定或随时间呈现某种趋势. 时间序列趋势一般为线性的(linear),二次方程式的 (quadratic)或指数函数(exponential function). 2.季节性变动(Seasonal variation) 按时间变动,呈现重复性行为的序列
R语言与数据分析之九:时间内序列--HoltWinters指数平滑法
今天继续就指数平滑法中最复杂的一种时间序列:有增长或者减少趋势而且存在季节性波动的时间序列的预測算法即Holt-Winters和大家分享.这样的序列能够被分解为水平趋势部分.季节波动部分,因此这两个因素应该在算法中有相应的參数来控制. Holt-Winters算法中提供了alpha.beta和gamma 来分别相应当前点的水平.趋势部分和季节部分.參数的去执法范围都是0-1之间,而且參数接近0时.最近的观測值的影响权重就越小.我们以澳大利亚昆士兰州海滨纪念商品的月度销售日子为分析对象.老套路.咱
转载:二次指数平滑法求预测值的Java代码
原文地址: http://blog.csdn.net/qustmeng/article/details/52186378?locationNum=4&fps=1 import java.util.LinkedList; import java.util.List; public class Demo { /** * 二次指数平滑法求预测值 * @param list 基础数据集合 * @param year 未来第几期 * @param modu
时间序列挖掘-预测算法-三次指数平滑法(Holt-Winters)——三次指数平滑算法可以很好的保存时间序列数据的趋势和季节性信息
from:http://www.cnblogs.com/kemaswill/archive/2013/04/01/2993583.html 在时间序列中,我们需要基于该时间序列当前已有的数据来预测其在之后的走势,三次指数平滑(Triple/Three Order Exponential Smoothing,Holt-Winters)算法可以很好的进行时间序列的预测. 时间序列数据一般有以下几种特点:1.趋势(Trend) 2. 季节性(Seasonality). 趋势描述的是时间序列的整体走势
R语言-时间序列
时间序列:可以用来预测未来的参数, 1.生成时间序列对象 sales <- c(18, 33, 41, 7, 34, 35, 24, 25, 24, 21, 25, 20, 22, 31, 40, 29, 25, 21, 22, 54, 31, 25, 26, 35) # 1.生成时序对象 tsales <- ts(sales,start = c(2003,1),frequency = 12) plot(tsales) # 2.获得对象信息 start(tsales) end(tsales)
R语言-时间序列图
1.时间序列图 plot()函数 > air<-read.csv("openair.csv") > plot(air$nox~as.Date(air$date,"%d/%m/%Y %H:%M"), #把年月日时分秒转换成日期格式 + type="l", + xlab="Time", ylab="Concentration (ppb)", + main="Time trend of
R-三次指数平滑法实践
data <- read.csv("H://day_shuaka.csv") raw0 <- data[359:752,] raw0$weekday <- as.factor(weekdays(as.Date(as.character(raw0$ds),"%Y%m%d"))) data1 <- raw0[1:365,] data2 <- raw0[366:394,] fit.lm <- lm(shuaka ~ weekday ,d
R语言与数据分析之八:时间序列--霍尔特指数平滑法
上篇我和小伙伴们分享了简单指数平滑法,简单指数平滑法仅仅能预測那些处于恒定水平和没有季节变动的时间序列,今天和大家分享非恒定水平即有增长或者减少趋势的.没有季节性可相加模型的时间序列预測算法---霍尔特指数平滑法(Holt). Holt 指数平滑法预计当前时间的水平和斜率.其平滑水平是由两个參数控制.alpha:预计当前点水平.beta:预计当前点趋势部分斜率.两个參数都介于0-1之间.当參数越接近0,大部分最近的观測值的权值将较小. 我们以1866年到1911年每年女士裙子直径为案例,我们首先
时间序列 预测分析 R语言
在对短期数据的预测分析中,我们经常用到时间序列中的指数平滑做数据预测,然后根据不同. 下面我们来看下具体的过程 x<-data.frame(rq=seq(as.Date('2016-11-15'),as.Date('2016-11-22'),by='day'), sr=c(300,697,511,1534,1155,1233,1509,1744)) xl<-ts(x$sr) #构建时间序列 plot.ts(xl) 从上图的结果来看,这是一个增长趋势的时间序列. 模型选择上我们可以依据以下标准进
时间序列数据的定义,读取与指数平滑(Java)
应上头的要求,需要实现以下指数平滑进行资源调度负载的预测,那就是用我最喜欢的Java做一下吧. 引用<计量经济学导论>的一句话:时间序列数据区别于横截面数据的一个明显特点是,时间序列数据集是按照时间顺序排列的. 显然,横截面数据被视为随机的结果,也就是说在总体中随机抽取样本.时间序列数据和横截面数据区别较为微妙,虽然它也满足随机性,但是这个序列标有时间脚标,依照时间有序,而不可以让时间随机排列导致错乱,我们不能让时间逆转重新开始这个过程.对于这样的序列我们称之为随机过程,或者时间序列过程. 对
Holt Winter 指数平滑模型
1 指数平滑法 移动平均模型在解决时间序列问题上简单有效,但它们的计算比较难,因为不能通过之前的计算结果推算出加权移动平均值.此外,移动平均法不能很好的处理数据集边缘的数据变化,也不能应用于现有数据集的范围之外.因此,移动平均法的预测效果相对较差. 指数平滑法(exponential smoothing)是一种简单的计算方案,可以有效的避免上述问题.按照模型参数的不同,指数平滑的形式可以分为一次指数平滑法.二次指数平滑法.三次指数平滑法.其中一次指数平滑法针对没有趋势和季节性的序列,二次指数平滑
R语言实现金融数据的时间序列分析及建模
R语言实现金融数据的时间序列分析及建模 一 移动平均 移动平均能消除数据中的季节变动和不规则变动.若序列中存在周期变动,则通常以周期为移动平均项数.移动平均法可以通过数据显示出数据长期趋势的变动规律. R可用filter()函数做移动平均.用法:filter(data,filter,sides) 1.简单移动平均 简单移动平均就是将n个观测值的平均数作为第(n 1)/2个的拟合值.当n为偶数时,需进行二次移动平均.简单移动平均假设序列长期趋势的斜率不变. 以我国1992到20
使用excel计算指数平滑和移动平均
指数平滑法 原数数据如下: 点击数据——数据分析 选择指数平滑 最一次平滑 由于我们选择的区域是B1:B22,第一个单元格“钢产量”,被当做标志,所以我们应该勾选标志.当我们勾选了标志后,列中的第一个单元格将不被用于计算,计算从第二个单元格开始. 结果如下: 做二次平滑 这里,我们不再采用标志,所以数据区间选择在C3:C22 对比一下 阻尼系数=0.3 阻尼系数=0.05 阻尼系数=0.9 画在一张图上对比下,可见阻尼系数越大,曲线越平. 移动平均(一阶和二阶) 同理可以使用
Rserve详解,R语言客户端RSclient【转】
R语言服务器程序 Rserve详解 http://blog.fens.me/r-rserve-server/ Rserve的R语言客户端RSclient https://blog.csdn.net/u011955252/article/details/65442783 http://blog.fens.me/series-r/ R的极客理想系列文章 R的极客理想系列文章,涵盖了R的思想,使用,工具,创新等的一系列要点,以我个人的学习和体验去诠释R的强大. R语言作为统计学一门语言,一直在小众领域
[译]如何使用Python构建指数平滑模型:Simple Exponential Smoothing, Holt, and Holt-Winters
原文连接:How to Build Exponential Smoothing Models Using Python: Simple Exponential Smoothing, Holt, and- 今年前12个月,iPhone XS将售出多少部?在埃隆·马斯克(Elon musk)在直播节目中吸食大麻之后,特斯拉的需求趋势是什么?这个冬天会暖和吗?(我住在加拿大.)如果你对这些问题感到好奇,指数平滑法可以通过建立模型来预测未来. 指数平滑方法为过去的观测分配指数递减的权重.得到的观测值越近
【R语言学习】时间序列
时序分析会用到的函数 函数 程序包 用途 ts() stats 生成时序对象 plot() graphics 画出时间序列的折线图 start() stats 返回时间序列的开始时间 end() stats 返回时间序列的结束时间 frequency() stats 返回时间序列中时间点的个数 window() stats 对时序对象取子集 ma() forecast 拟合一个简单的移动平均模型 stl() stats 用LOESS光滑将时序分解为季节项.趋势项和随机项 monthplot()
写论文,没数据?R语言抓取网页大数据
写论文,没数据?R语言抓取网页大数据 纵观国内外,大数据的市场发展迅猛,政府的扶持也达到了空前的力度,甚至将大数据纳入发展战略.如此形势为社会各界提供了很多机遇和挑战,而我们作为卫生(医学)统计领域的一份子,更要把握好机会.放眼全球,大数据的应用规模仍在持续扩张,几乎每个行业都将目光瞄准了大数据背后的巨大价值.未来五到十年,是我国推进大数据发展的关键时期,打造高效的大数据应用机制和产业链迫在眉睫. 空格根据当前大数据行业发展的分析,我们着手大数据不妨从"可视化数据抓取"开始考虑.这里提
R语言︱噪声数据处理、数据分组——分箱法(离散化、等级化)
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 分箱法在实际案例操作过程中较为常见,能够将一些数据离散化,等级化,比如年龄段,我们并不想知道确切的几岁,于是乎可以将其分组.分段. 基础函数中cut能够进行简单分组,并且可以用于等宽分箱法. cut函数:cut(x, n):将连续型变量x分割为有着n个水平的因子.(参考来自: R语言︱数据集分组.筛选) [plain] view plain c
R语言函数总结(转)
R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头,并且如果以 . 开头,第二个字符不允许是数字. 基本命令要么是表达式(expressions)要么就是 赋值(assignments). 命令可以被 (;)隔开,或者另起一行. 基本命令可以通过大括弧({和}) 放在一起构成一个复合表达式(compound expression). 一行中,从井号(#)开始到句子收尾之间的语句就是是注释. R是动态类型.强类型的语
R语言︱处理缺失数据&&异常值检验、离群点分析、异常值处理
在数据挖掘的过程中,数据预处理占到了整个过程的60% 脏数据:指一般不符合要求,以及不能直接进行相应分析的数据 脏数据包括:缺失值.异常值.不一致的值.重复数据及含有特殊符号(如#.¥.*)的数据 数据清洗:删除原始数据集中的无关数据.重复数据.平滑噪声数据.处理缺失值.异常值等 缺失值处理:删除记录.数据插补和不处理 主要用到VIM和mice包 install.packages(c("VIM","mice")) 1.处理缺失值的步骤 步骤: (1)识别缺失数据:
热门专题
net core3.1 年月日路由
securecrt遇到一个致命的错误且必须关闭
apt RPM安装包
App WebDriver 手册
java什么时候进行垃圾回收
idea 创建类是红色
java sonar测试覆盖率和执行
redis两种备份方式
java -jar 带参数
C# SysWOW64 重定向
手机浏览器怎么跳转加qq好友
spring mongodb 分页
docker安装redis并以配置文件方式启动
unbunt 调试器
cv2.drawkeypoints直方图描述
C#BitMap报参数无效
mapbox 怎么使用画廊
postgresql 集群 节点间最大距离
你买了一箱n个苹果,很不幸的是买完
浪潮java开发校招笔试题