首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
r语言的中括号是矩阵吗
2024-09-04
R语言六种数据类型
1 向量 1.1 定义向量 向量使用c来赋值,向量中不能混合不同类型的数据 x<-c(2,3,7,6,8) 数值型num y<-("one","two","three") 字符型chr z<-c(TRUE,TRUE,FALSE) 逻辑型logi 查看变量的类型:class(x) 1.2 访问向量 访问中的元素,使用中括号(R语言区分大小写),R语言索引从1开始 访问第二个元素:x[2] 访问第1和第3个元素:x[c(1,3
R语言编程艺术#02#矩阵(matrix)和数组(array)
矩阵(matrix)是一种特殊的向量,包含两个附加的属性:行数和列数.所以矩阵也是和向量一样,有模式(数据类型)的概念.(但反过来,向量却不能看作是只有一列或一行的矩阵. 数组(array)是R里更一般的对象,矩阵是数组的一个特殊情形.数组可以是多维的.例如:一个三维数组可以包含行.列和层(layer),而一个矩阵只有行和列两个维度 1.创建矩阵 矩阵的行和列的下标都是从1开始,如:矩阵a左上角的元素记作a[1,1].矩阵在R中是按列存储的,也就是说先存储第一列,再存储第二列,以此类推. > y
R语言学习——向量,矩阵
在R中,基本的数据结构有:向量,矩阵,数组,数据框,列表,因子,函数等. 向量:一系列同类型的有序元素构成. 向量是一维结构. 向量是R最简单的数据结构,在R中没有标量. 标量被看成1个元素的向量. 向量元素必须是同类型的. 由于向量是最简单的数据结构,因此本章中以向量为例子来解释各个概念. 矩阵:二维的同类型元素的集合. 矩阵由函数matrix创建. 矩阵需要输入行数,列数. 矩阵是二维的,引用元素可通过双下标做索引. 矩阵在物理实现时,是向量附加行列数属性来实现的,因此也可以通过向量的方式引
R语言学习笔记:矩阵与数组(array)
元素可以保存在多个维度的对象中,数组存储的是多维数据元素,矩阵的是数组的特殊情况,它具有两维. 创建数组的几种方法. 1. > m<-c(45,23,66,77,33,44,56,12,78,23) > dim(m)<-c(2,5) > m [,1] [,2] [,3] [,4] [,5] [1,] 45 66 33 56 78 [2,] 23 77 44 12 23 2. > m<-matrix(c(45,23,
R语言将List转为矩阵do.call
ehparse.matrix <- do.call(rbind, easyham.parse)
R语言编程艺术# 矩阵(matrix)和数组(array)
矩阵(matrix)是一种特殊的向量,包含两个附加的属性:行数和列数.所以矩阵也是和向量一样,有模式(数据类型)的概念.(但反过来,向量却不能看作是只有一列或一行的矩阵. 数组(array)是R里更一般的对象,矩阵是数组的一个特殊情形.数组可以是多维的.例如:一个三维数组可以包含行.列和层(layer),而一个矩阵只有行和列两个维度 1.创建矩阵 矩阵的行和列的下标都是从1开始,如:矩阵a左上角的元素记作a[1,1].矩阵在R中是按列存储的,也就是说先存储第一列,再存储第二列,以此类推. > y
使用R语言-为矩阵(表格)的行列命名
转自:http://www.dataguru.cn/article-2217-1.html R语言中经常进行矩阵(表格)数据的处理,在纷繁复杂的数据中,为其行列定义一个名字变得尤为重要.在处理巨量数据时,批量命名将是一个不错的操作方法,下面我们通过一些具体的例子演示怎样在R语言中为矩阵的行列进行批量的命名. > x <- matrix(1:12,nrow=3,byrow=T) 初始化一个矩阵,先行后列的顺序进行填充 > x 查看矩阵x [,1] [,2] [,3] [,4] [1,]
<R语言编程艺术>的一个错误以及矩阵相加
R语言编程艺术讲矩阵这节时,举了个随机噪声模糊罗斯福总统画像的例子.但是里面似乎有个错误,例子本意是区域外的值保持不变,而选定区域的值加一个随机值,但是实际情况是两个行列不相等的矩阵相加,会报错,如果我有看错,请大家告诉我. 函数调用和参数输入: 然后是函数的编写: R中不同长高的矩阵是不能相加的,即使1X1,不会出现向量补齐的情况,下面举个极端的例子: > a<-matrix(1,1,1)> b<-matrix(1:2,2,1)> a [,1][1,] 1> b [,
R语言矩阵维度“消失”的问题
矩阵(matrix)是R语言中很基础的一种数据结构,也是R语言使用者经常使用的一种数据结构.矩阵的维度一般为二维(m*n). R语言中矩阵的操作是非常简单易懂的,但是在对R语言做矩阵操作时,有个地方需要特别注意.下面我们通过一个例子说明. 首先,我们创建一个用于测试的矩阵. test1 <- matrix(data = c(1:6), nrow = 3, ncol = 2, dimnames = list(c("row1", "row2", "row
用R语言对NIPS会议文档进行聚类分析
一.用R语言建立文档矩阵 (这里我选用的是R x64 3.2.2) (这里我取的是04年NIPS共计207篇文档做分析,其中文档内容已将开头的作者名和最后的参考文献进行过滤处理) ##1.Data Import 导入自己下的3084篇NIPStxt文档 library("tm")#加载tm包 stopwords<- unlist(read.table("E:\\AllCode\\R\\stopwords.txt",stringsAsFactors=F)) d
R语言
什么是R语言编程? R语言是一种用于统计分析和为此目的创建图形的编程语言.不是数据类型,它具有用于计算的数据对象.它用于数据挖掘,回归分析,概率估计等领域,使用其中可用的许多软件包. R语言中的不同数据对象是什么?它们是R语言中的6个数据对象.它们是向量,列表,数组,矩阵,数据框和表. 什么使R语言中的有效变量名?有效的变量名称由字母,数字和点或下划线字符组成.变量名以字母或不以数字后跟的点开头. 数组和矩阵之间的主要区别是什么?矩阵总是二维的,因为它只有行和列.但是阵列可以具有任何数量的维度,
R语言基础:数组&列表&向量&矩阵&因子&数据框
R语言基础:数组和列表 数组(array) 一维数据是向量,二维数据是矩阵,数组是向量和矩阵的直接推广,是由三维或三维以上的数据构成的. 数组函数是array(),语法是:array(dadta, dim),其中data必须是同一类型的数据,dim是各维的长度组成的向量. 1.产生一个三维和四维数组. 例1:xx <- array(1:24, c(3, 4, 2)) #一个三维数组 例2:yy <- array(1:36, c(2, 3, 3, 2)) #一个四维数组 2.dim()函数可
R语言笔记1--向量、数组、矩阵、数据框、列表
注释:R语言是区分大小写的 1.向量 R语言中可以将各种向量赋值为一个变量,这种赋值操作符就是等号“=”,也可以使用“<-”. 1)产生向量 (1)函数c() 例如:x1=c(2,4,6,8,0) 表示数列 (2)例如: 向量a:2到60的元素都乘以2再加1 a[5]:显示向量a的第5个元素 a[-5]:除去向量a的第5个元素,显示其它元素 a[1:5]:显示第1到第5个元素 a[-(1:5)]:除去第1到第5个元素,显示其余的元素 a[c(2,4,7)]:显示第2,第4,第7个元素 a[
R语言矩阵matrix函数
矩阵是元素布置成二维矩形布局的R对象. 它们包含相同原子类型的元素.尽管我们可以创建只包含字符或只逻辑值的矩阵,但是它们没有多大用处.我们使用的是在数学计算中含有数字元素矩阵. 使用 matrix()函数创建一个矩阵. 语法 R语言中创建矩阵的基本语法是: matrix(data, nrow, ncol, byrow, dimnames) 以下是所使用的参数的说明: data - 是这成为矩阵的数据元素输入向量. nrow - 是要创建的行数. ncol - 要被创建的列的数目. byrow -
用R语言提取数据框中日期对应年份(列表转矩阵)
用R语言提取数据框中日期对应年份(列表转矩阵) 在数据处理中常会遇到要对数据框中的时间做聚类处理,如从"%m/%d/%Y"中提取年份. 对应操作为:拆分成列表——列表转矩阵——利用索引从矩阵中提取第一列—— year<-strsplit(case_data2$Date,split = "-") # strsplit函数将数据拆分成列表 year1<-]# 将列表转换为矩阵,提取第一列——年份 case_data2$year1<-year1 其他办法
R语言常用的矩阵操作
R语言是一门非常方便的数据分析语言,它内置了许多处理矩阵的方法.下面列出一些常用的矩阵操作方法示例. 矩阵的生成 > mat <- matrix(:, ncol = , nrow = , byrow=TRUE, dimnames=list(c(paste(:, sep = :, sep = ".")))) > mat y. y. y. y. x. x. x. x. 16# 矩阵的行列名还可以使用rownames或者colnames进行修改 > rownames(
R语言编程艺术#03#列表(list)
向量的元素要求都是同类型的,而列表(list)与向量不同,可以组合多个不同类型的对象.类似于C语言中的结构体(struct)类型. 1.创建列表 从技术上讲,列表就是向理.之前我们接触过的普通向量都称为"原子型"(atomic)向量,就是说,向量的元素已经是最小的.不可再分的.而列表则属于"递归型"(recursive)向量. 以一个雇员数据库作为第一个例子.对于每个雇员,我们存储其姓名.工资,以及一个布尔变量,表示是否工会成员.这三个变量有三个不同的类型:字符串.
【数据分析 R语言实战】学习笔记 第三章 数据预处理 (下)
3.3缺失值处理 R中缺失值以NA表示,判断数据是否存在缺失值的函数有两个,最基本的函数是is.na()它可以应用于向量.数据框等多种对象,返回逻辑值. > attach(data) The following objects are masked fromdata (pos = 3): city, price, salary > data$salary=replace(salary,salary>5,NA) > is.na(salary) [1] FALSEFALSE TRUE
R语言基本数据对象之向量的主要运算
在R语言里操作和接触的所有东西都称作对象(object).对象有很多种类 可以包含各种类型的数据.R 语言里所有的东西都被称为对象,R语言中常见的数据类型有几下几种,分别是字符型 (character).数值型 (numeric).复数型 (complex)以及逻辑型 (logical).通过mode()函数可以查看一个对象的类型. R语言中的基本运算包括以下:数学计算,比较运算,运算函数,向量常用统计函数,矩阵常用函数集合运算,向量化,从文件中读取数据,概率分布,循环和条件操作. 打开R语言的
如何在R语言中使用Logistic回归模型
在日常学习或工作中经常会使用线性回归模型对某一事物进行预测,例如预测房价.身高.GDP.学生成绩等,发现这些被预测的变量都属于连续型变量.然而有些情况下,被预测变量可能是二元变量,即成功或失败.流失或不流失.涨或跌等,对于这类问题,线性回归将束手无策.这个时候就需要另一种回归方法进行预测,即Logistic回归. 在实际应用中,Logistic模型主要有三大用途: 1)寻找危险因素,找到某些影响因变量的"坏因素",一般可以通过优势比发现危险因素: 2)用于预测,可以预测某种情况发生的概
热门专题
spring validator 手动 邮箱校验
如何查看excel中有几个工作表
django z中文编码
c# token 续期
postgresql 生成纯数字id
安装到Android6以下秒退
java ExecutorService线程池关闭成功
apache httpd.exe 删除服务命令
html5 canvas盖章
element 复合型输入框传值
python算法面试题目100及最佳答案
noip2010初赛普及组解析
visual studio 局域网并行编译
vue generateMenus出现同名父路由
Android使用OKhttp实现登录注册功能
使用war安装了jenkins 怎么卸载
jpaproperties 配置
python 与vscode
mysql 字符串前缀 如何走索引
elasticsearch 批处理