首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
r语言皮尔逊相关系数
2024-08-16
R语言做相关性分析
衡量随机变量相关性的方法主要有三种:pearson相关系数,spearman相关系数,kendall相关系数: 1. pearson相关系数,亦即皮尔逊相关系数 pearson相关系数用来衡量两个随机变量之间的相关性 R语言中求两个随机变量pearson相关系数的函数: 1//赋予a,b向量值 2a<-c(1,2,3) 3b<-c(11,12,14) 4 5//计算pearson相关系数 6cor.test(a,b,method="pearson") 结果 Pe
皮尔逊相关系数(Pearson Correlation Coefficient, Pearson's r)
Pearson's r,称为皮尔逊相关系数(Pearson correlation coefficient),用来反映两个随机变量之间的线性相关程度. 用于总体(population)时记作ρ (rho)(population correlation coefficient): 给定两个随机变量X,Y,ρ的公式为: 其中: 是协方差 是X的标准差 是Y的标准差 用于样本(sample)时记作r(sample correlation coefficient): 给定两个随机变量x,y,r的公
皮尔逊相似度计算的例子(R语言)
编译最近的协同过滤算法皮尔逊相似度计算.下顺便研究R简单使用的语言.概率统计知识. 一.概率论和统计学概念复习 1)期望值(Expected Value) 由于这里每一个数都是等概率的.所以就当做是数组或向量中全部元素的平均数吧.能够使用R语言中函数mean(). 2)方差(Variance) 方差分为population variance整体方差和sample variance样本方差,差别是整体方差除以N,样本方差除以N-1. 数理统计中经常使用样本方差,R语言的var()函数计算的也是样本
皮尔森相似度计算举例(R语言)
整理了一下最近对协同过滤推荐算法中的皮尔森相似度计算,顺带学习了下R语言的简单使用,也复习了概率统计知识. 一.概率论和统计学概念复习 1)期望值(Expected Value) 因为这里每个数都是等概率的,所以就当做是数组或向量中所有元素的平均数吧.可以使用R语言中函数mean(). 2)方差(Variance) 方差分为population variance总体方差和sample variance样本方差,区别是总体方差除以N,样本方差除以N-1. 数理统计中常用样本方差,R语言的var()
用R语言的quantreg包进行分位数回归
什么是分位数回归 分位数回归(Quantile Regression)是计量经济学的研究前沿方向之一,它利用解释变量的多个分位数(例如四分位.十分位.百分位等)来得到被解释变量的条件分布的相应的分位数方程. 与传统的OLS只得到均值方程相比,分位数回归可以更详细地描述变量的统计分布.它是给定回归变量X,估计响应变量Y条件分位数的一个基本方法:它不仅可以度量回归变量在分布中心的影响,而且还可以度量在分布上尾和下尾的影响,因此较之经典的最小二乘回归具有独特的优势.众所周知,经典的最小二乘回归是针对因
如何在R语言中使用Logistic回归模型
在日常学习或工作中经常会使用线性回归模型对某一事物进行预测,例如预测房价.身高.GDP.学生成绩等,发现这些被预测的变量都属于连续型变量.然而有些情况下,被预测变量可能是二元变量,即成功或失败.流失或不流失.涨或跌等,对于这类问题,线性回归将束手无策.这个时候就需要另一种回归方法进行预测,即Logistic回归. 在实际应用中,Logistic模型主要有三大用途: 1)寻找危险因素,找到某些影响因变量的"坏因素",一般可以通过优势比发现危险因素: 2)用于预测,可以预测某种情况发生的概
R语言解读多元线性回归模型
转载:http://blog.fens.me/r-multi-linear-regression/ 前言 本文接上一篇R语言解读一元线性回归模型.在许多生活和工作的实际问题中,影响因变量的因素可能不止一个,比如对于知识水平越高的人,收入水平也越高,这样的一个结论.这其中可能包括了因为更好的家庭条件,所以有了更好的教育:因为在一线城市发展,所以有了更好的工作机会:所处的行业赶上了大的经济上行周期等.要想解读这些规律,是复杂的.多维度的,多元回归分析方法更适合解读生活的规律. 由于本文为非统计的专业
R语言解读一元线性回归模型
转载自:http://blog.fens.me/r-linear-regression/ 前言 在我们的日常生活中,存在大量的具有相关性的事件,比如大气压和海拔高度,海拔越高大气压强越小:人的身高和体重,普遍来看越高的人体重也越重.还有一些可能存在相关性的事件,比如知识水平越高的人,收入水平越高:市场化的国家经济越好,则货币越强势,反而全球经济危机,黄金等避险资产越走强. 如果我们要研究这些事件,找到不同变量之间的关系,我们就会用到回归分析.一元线性回归分析是处理两个变量之间关系的最简单模型,是
R语言实战(三)基本图形与基本统计分析
本文对应<R语言实战>第6章:基本图形:第7章:基本统计分析 ================================================================================================================================================== 本章讨论的图形,主要用于分析数据前,对数据的初步掌握.想要对数据有一个初步的印象,最好的方式就是观察它,也就是将数据可视化.在这个过程中,我们
[转]概率基础和R语言
概率基础和R语言 R的极客理想系列文章,涵盖了R的思想,使用,工具,创新等的一系列要点,以我个人的学习和体验去诠释R的强大. R语言作为统计学一门语言,一直在小众领域闪耀着光芒.直到大数据的爆发,R语言变成了一门炙手可热的数据分析的利器.随着越来越多的工程背景的人的加入,R语言的社区在迅速扩大成长.现在已不仅仅是统计领域,教育,银行,电商,互联网….都在使用R语言. 要成为有理想的极客,我们不能停留在语法上,要掌握牢固的数学,概率,统计知识,同时还要有创新精神,把R语言发挥到各个领域.让我们一起
机器学习(一) 从一个R语言案例学线性回归
写在前面的话 按照正常的顺序,本文应该先讲一些线性回归的基本概念,比如什么叫线性回归,线性回规的常用解法等.但既然本文名为<从一个R语言案例学会线性回归>,那就更重视如何使用R语言去解决线性回归问题,因此本文会先讲案例. 线性回归简介 如下图所示,如果把自变量(也叫independent variable)和因变量(也叫dependent variable)画在二维坐标上,则每条记录对应一个点.线性回规最常见的应用场景则是用一条直线去拟和已知的点,并对给定的x值预测其y值.而我们要做的就是找出
主成分分析(PCA)原理及R语言实现
原理: 主成分分析 - stanford 主成分分析法 - 智库 主成分分析(Principal Component Analysis)原理 主成分分析及R语言案例 - 文库 主成分分析法的原理应用及计算步骤 - 文库 主成分分析之R篇 [机器学习算法实现]主成分分析(PCA)--基于python+numpy scikit-learn中PCA的使用方法 Python 主成分分析PCA 机器学习实战-PCA主成分分析.降维(好) 关于主成分分析的五个问题 多变量统计方法,通过析取主成分显出最大的个
线性函数拟合R语言示例
线性函数拟合(y=a+bx) 1. R运行实例 R语言运行代码如下:绿色为要提供的数据,黄色标识信息为需要保存的. x<-c(0.10,0.11, 0.12, 0.13, 0.14, 0.15,0.16, 0.17, 0.18, 0.20, 0.21, 0.23) y<-c(42.0,43.5, 45.0, 45.5, 45.0, 47.5,49.0, 53.0, 50.0, 55.0, 55.0, 60.0) data1=data.frame(x=x,y=y) #数据存入数据框
R语言 逐步回归分析
逐步回归分析是以AIC信息统计量为准则,通过选择最小的AIC信息统计量,来达到删除或增加变量的目的. R语言中用于逐步回归分析的函数 step() drop1() add1() #1.载入数据 首先对数据进行多元线性回归分析 tdata<-data.frame( x1=c( , ,,, ,, , , ,, ,,), x2=c(,,,,,,,,,,,,), x3=c( ,, , , , ,,,, ,, , ), x4=c(,,,,,, ,,,,,,), Y =c(78.5,74.3,
数据分析与R语言
数据结构 创建向量和矩阵 函数c(), length(), mode(), rbind(), cbind() 求平均值,和,连乘,最值,方差,标准差 函数mean(), sum(), min(), max(), var(), sd(), prod() 帮助文档 函数help() 生成向量 seq() 生成字母序列letters 新建向量 Which()函数,rev()函数,sort()函数 生成矩阵 函数matrix() 矩阵运算 函数t(),矩阵加减 矩阵运算 矩阵相乘,函数diag() 矩阵
R语言实战(四)回归
本文对应<R语言实战>第8章:回归 回归是一个广义的概念,通指那些用一个或多个预测变量(也称自变量或解释变量)来预测响应变量(也称因变量.效标变量或结果变量)的方法.通常,回归分析可以用来挑选与相应变量相关的解释变量,可以描述两者的关系,也可以生成一个等式,通过解释变量来预测响应变量. 回归分析的各种变体 回归类型 用途 简单线性 用一个量化的解释变量预测一个量化的响应变量 多项式 用一个量化的解释变量预测一个量化的响应变量,模型的关系是n阶多项式 多元线性 用两个或多个量化的解释变量预测一个
机器学习:R语言中如何使用最小二乘法
详细内容见上一篇文章:http://www.cnblogs.com/lc1217/p/6514734.html 这里只是介绍下R语言中如何使用最小二乘法解决一次函数的线性回归问题. 代码如下:(数据同上一篇博客)(是不是很简单????) > x<-c(6.19,2.51,7.29,7.01,5.7,2.66,3.98,2.5,9.1,4.2) > y<-c(5.25,2.83,6.41,6.71,5.1,4.23,5.05,1.98,10.5,6.3) > lsfit(x,y
R语言进行机器学习方法及实例(一)
版权声明:本文为博主原创文章,转载请注明出处 机器学习的研究领域是发明计算机算法,把数据转变为智能行为.机器学习和数据挖掘的区别可能是机器学习侧重于执行一个已知的任务,而数据发掘是在大数据中寻找有价值的东西. 机器学习一般步骤 收集数据,将数据转化为适合分析的电子数据 探索和准备数据,机器学习中许多时间花费在数据探索中,它要学习更多的数据信息,识别它们的微小差异 基于数据训练模型,根据你要学习什么的设想,选择你要使用的一种或多种算法 评价模型的性能,需要依据一定的检验标准 改进模型的性能,有
重磅︱文本挖掘深度学习之word2vec的R语言实现
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:2013年末,Google发布的 word2vec工具引起了一帮人的热捧,大家几乎都认为它是深度学习在自然语言领域的一项了不起的应用,各种欢呼"深度学习在自然语言领域开始发力 了". 基于word2vec现在还出现了doc2vec,word2vec相比传统,考虑单词上下文的语义:但是doc2vec不仅考虑了单词上下文的语义,
R语言︱线性混合模型理论与案例探究(固定效应&随机效应)
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 线性混合模型与普通的线性模型不同的地方是除了有固定效应外还有随机效应. 笔者认为一般统计模型中的横截面回归模型中大致可以分为两个方向:一个是交互效应方向(调节.中介效应).一个是随机性方向(固定效应.随机效应). 两个方向的选择需要根据业务需求: 交互效应较多探究的是变量之间的网络关系,可能会有很多变量,多变量之间的关系: 而随机性探究的是变量
热门专题
oracle更具日期查询
wm_concat和分组
pandas 排序 取某行
.project文件的作用
vue url下载到本地
通过策略禁止U盘识别
panabit自定义登录界面
数据分析三剑客是哪几个工具
php-fpm 启动指定文件
c# cs架构连接oracle生成实体类
php正则表达式名字是否包含非法字符
EasyUI Datagrid 如何配合layout 使用
模拟器 真机 安卓visuro studio
ue4 读取安卓相册
dnf110级npk
mongodb结果输出工具类
ubuntu中无法通过命令启动eclipse
网件3700V4不死固件
linux查找特定应用
iis7 设置gzip压缩