首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
r语言设置九象图图例
2024-11-05
一幅图解决R语言绘制图例的各种问题
一幅图解决R语言绘制图例的各种问题 用R语言画图的小伙伴们有木有这样的感受,"命令写的很完整,运行没有报错,可图例藏哪去了?""图画的很美,怎么总是图例不协调?""啊~~啊,抓狂,图例盖住关键的点了.""怎么才能让图例指哪站哪?" "图例太长怎么办"-- 吐槽吐到累,不如多掌握几个图例(Legend)的软肋,更好地利用R语言绘图. legend(x, y = NULL, legend, fill = NUL
R语言绘制相对性关系图
准备 第一步就是安装R语言环境以及RStudio 图绘制准备 首先安装库文件,敲入指令,回车 install.packages('corrplot') 然后安装excel导入的插件,点击右上角import Dataset,选中From excel即可. 这些操作都很简单~~ 数据预处理 然后到了数据输入了,这么多数据,我们总不能一行输入吧?那得有多蠢 于是我们利用上了数据导入功能,当当当~~ 然而理想很丰满,现实却很蛋疼,导入的excel数据格式不是我们希望的矩阵格式ORZ! 哎,休息下喝杯茶,
R语言绘制箱型图
箱形图是数据集中数据分布情况的衡量标准.它将数据集分为三个四分位数.盒形图表示数据集中的最小值,最大值,中值,第一四分位数和第四四分位数. 通过为每个数据集绘制箱形图, 比较数据集中的数据分布也很有用. R中的盒形图通过使用boxplot()函数来创建. 基本公式为: boxplot(x, data, notch, varwidth, names, main) x - 是向量或公式.data - 是数据帧.notch - 是一个逻辑值,设置为TRUE可以画出一个缺口.varwidth - 是一个
R语言中的箱图介绍 boxplot
画箱图的函数: boxplot()##help(boxplot)查询具体用法 图例的解释: 如下图,是两个简单的箱图. 中间的箱子的上下边,分别是第三,一个四分位数. 中间的黑线是第二四分位数(中位数). 设r是变量的四分位距,箱图上方的小横线是小于或等于第三个四分位数+1.5*r的最大观测值.同时下方的小横线是,大于等于第一个四分位数减去1.5*r的最大的观测值. 图中的小白圈,代表很大可能性上是离群点(outlier).(在其他图中也适用) 总结: 箱图给出了大量的信息,不仅
R语言学习 - 箱线图(小提琴图、抖动图、区域散点图)
箱线图 箱线图是能同时反映数据统计量和整体分布,又很漂亮的展示图.在2014年的Nature Method上有2篇Correspondence论述了使用箱线图的好处和一个在线绘制箱线图的工具.就这样都可以发两篇Nature method,没天理,但也说明了箱线图的重要意义. 下面这张图展示了Bar plot.Box plot.Volin plot和Bean plot对数据分布的反应.从Bar plot上只能看到数据标准差或标准误不同:Box plot可以看到数据分布的集中性不同:Violin
R语言绘图:雷达图
使用fmsb包绘制雷达图 library("fmsb") radarfig <- rbind(rep(90, 4), rep(60, 4), c(86.17, 73.96, 82.70, 69.55)) #求平均值 radarfig <- as.data.frame(radarfig) #转化为data.frame colnames(radarfig) <- c("服务方式\n完备度", "在线服务\n成熟度", "办
R语言画云字图
install.packages('wordcloud') library(wordcloud) colors=c('red','blue','green','yellow','purple') data=read.csv("data.csv") wordcloud(data$words, data$freq, scale=c(10,0.5),min.freq=-Inf,max.words=Inf,colors=colors,random.order=F,random.color=F,
R语言 ggplot2 画平滑图
library(splines) library(ggplot2) dt1 <- structure(list(Age = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("o80", "u80"), class = "factor"), NoP = c(47L, 5
R语言设置write.table()输出的文件格式
write.table(),是保存数据为文件的函数. > xiaohuqingdan <- c(3900088702, 3900072499,3900021029) > xiaohuqingdan [1] 3900088702 3900072499 3900021029 > write.table(xiaohuqingdan,"1234.txt") 得到的1234.txt,打开是这个样子: "x" "1" 39000887
R语言 环境设置
尝试在线环境 你真的不需要设置自己的环境来开始学习R编程语言. 原因很简单,我们已经在线设置了R编程环境,以便您可以在进行理论工作的同时在线编译和执行所有可用的示例. 这给你对你正在阅读的信心,并用不同的选项检查结果. 随意修改任何示例并在线执行. 实例: # Print Hello World. print("Hello World") # Add two numbers. print(23.9 + 11.6) 本地环境设置 如果你仍然愿意为R语言设置你的环境,你可以按照下面的步骤.
R语言︱情感分析—词典型代码实践(最基础)(一)
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:词典型情感分析对词典要求极高,词典中的词语需要人工去选择,但是这样的选择会很有目标以及针对性.本文代码大多来源于<数据挖掘之道>的情感分析章节.本书中还提到了监督算法式的情感分析,可见博客: R语言︱情感分析-基于监督算法R语言实现笔记. 可以与博客 R语言︱词典型情感分析文本操作技巧汇总(打标签.词典与数据匹配等)对着看. 词典型
R语言图表
条形图 在R语言中创建条形图的基本语法是 barplot(H, xlab, ylab, main, names.arg, col) H是包含在条形图中使用的数值的向量或矩阵 xlab是x轴的标签 ylab是y轴的标签 main是条形图的标题 names.arg是在每个条下出现的名称的向量 col用于向图中的条形提供颜色 组合条形图和堆积条形图 # Create the input vectors. colors <- c("green","orange",
第四篇:R语言数据可视化之折线图、堆积图、堆积面积图
折线图简介 折线图通常用来对两个连续变量的依存关系进行可视化,其中横轴很多时候是时间轴. 但横轴也不一定是连续型变量,可以是有序的离散型变量. 绘制基本折线图 本例选用如下测试数据集: 绘制方法是首先调用ggplot函数选定数据集,并在aes参数中指明横轴纵轴.然后调用条形图函数geom_line()便可绘制出基本折线图.R语言示例代码如下: # 基函数 ggplot(BOD, aes(x = Time, y = demand)) + # 折线图函数 geom_line() 运行结果:
第六篇:R语言数据可视化之数据分布图(直方图、密度曲线、箱线图、等高线、2D密度图)
数据分布图简介 中医上讲看病四诊法为:望闻问切.而数据分析师分析数据的过程也有点相似,我们需要望:看看数据长什么样:闻:仔细分析数据是否合理:问:针对前两步工作搜集到的问题与业务方交流:切:结合业务方反馈的结果和项目需求进行数据分析. "望"的方法可以认为就是制作数据可视化图表的过程,而数据分布图无疑是非常能反映数据特征(用户症状)的.R语言提供了多种图表对数据分布进行描述,本文接下来将逐一讲解. 绘制基本直方图 本例选用如下测试集: 直方图的横轴为绑定变量区间分隔的取值范围,纵轴则表
R语言-画线图
R语言分高水平作图函数和低水平作图函数 高水平作图函数:可以独立绘图,例如plot() 低水平作图函数:必须先运行高水平作图函数绘图,然后再加画在已有的图上面 第一种方法:plot()函数 > sales<-read.csv("dailysales.csv", header=TRUE) #读取文件和列名 > plot(sales$units~as.Date(sales$date,"%d/%m/%y"), #修改日期格式 + type="l
R语言实战(九)主成分和因子分析
本文对应<R语言实战>第14章:主成分和因子分析 主成分分析(PCA)是一种数据降维技巧,它能将大量相关变量转化为一组很少的不相关变量,这些无关变量成为主成分. 探索性因子分析(EFA)是一系列用来发现一组变量的潜在结构的方法.通过寻找一组更小的.潜在的或隐藏的结构来解释已观测到的.显式的变量间的关系. 这两种方法都需要大样本来支撑稳定的结果,但是多大是足够的也是一个复杂的问题.目前,数据分析师常使用经验法则:因子分析需要5~10倍于变量数的样本数.另外有研究表明,所需样本量依赖于因子数目.与
R语言:表格的线图转化
R语言:表格的线图转化 最先选取的是北京各区普通住宅成交十年(2016年及2006年)涨幅对比.这张图比较plain,主要拿来练习: 1.数据表格的基本整理及计算 2. 数据的初步分析 3.线图的基本绘图 图片来自网络 图片输入为excel,然后倒入到r程序中. install.packages("openxlsx") library(openxlsx) readFilePath<-"E:/citystock.xlsx" mydata<-read.xls
R语言画图教程之盒形图
R语言画图教程之盒形图 我们之前有分享过一系列的R语言画图代码(PCA图.Pathway图.火山图.RDA图.热图),今天再来补充一个盒形图(箱形图)的代码. 以下代码只是示例,不能直接搬来用哦,注意看注释. --------------代码开始了------------- setwd("E:/") #改变工作目录 data=read.table("data.txt",header=T) #读取数据,"header=T"第一行为表头 mycolo
结合MATLAB、Python、R语言,在求得显著差异的边(节点对)之后,怎么画circle图
先来看看成果图: OK,开始画图: 实验背景声明:在脑影像分析中,我们首先构建脑网络,然后使用双样本t对比两组人的连接差异,然后使用以上的图进行可视化,一般红色连接代表显著升高,绿色代表显著下降.(非必须,根据实际需求设计,如上图中红色代表相应的连接差异与HAMD抑郁量表评分显著相关,绿色表示不相关).这里呢,我们研究了一组病人以及年龄性别匹配的健康被试的fMRI的数据,首先进行fMR
R语言与医学统计图形【4】直方图、金字塔图
R语言基础绘图系统 基础图形--直方图.金字塔图 3.直方图 参数设置及比较. op <- par(mfrow=c(2,3)) data <- rnorm(100,10,5) hist(data,col = 'light green') #默认分组 hist(data,col = 'sky blue',breaks = 15) #分成15组 hist(data,col = 'orange',breaks = seq(-5,25,1)) #自定义组距 hist(data,col = 'pink'
热门专题
springboot在过滤器重新转发接口
1.lomuto划分是什么意思
lognack打印彩色日志模板
tcpdump 查看本机端口
Resources.LoadAsync 读取二进制
百度小程序 长按文字
select2官网 api
el-cascader 多选后内容自适应
flink 配置kerberos
elasticsearch 集群
rsync 拉取指定文件
archlinux ls 压缩包 红色
kernel编译make底层
贴片三极管丝印标记和三极管型号是一一对应的吗
pgsql设置连接用户名和密码
opencv 2个视频 补过渡
ogg抽取小表速度也很慢
macos 开机启动
java 下载文件设置字符编码
windows10搭建dns解析服务器