首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
r语言 根据某一分类变量进行数据框拆分
2024-11-02
R语言:数据的分割-计算-整合(split-apply-aggregate)
当获取到原始数据时,我们通常的做法是对该数据进行分割成小片段,然后对各小片段进行计算统计,最后整合成最终的数据.这是统计学里数据处理的一般规律. R语言为我们提供了相应的函数来分别处理这三个阶段任务. 分割:split()和subset()函数. 计算:apply(),lapply(),tapply(),sapply() 整合:aggregate() 注意几点: 1.向量,矩阵,数组的长度就是它元素的个数,用length获取:而数据集,列表的长度则是它变量的个数,注意二者的不同. 实际上,向量和
R语言通过loess去除某个变量对数据的影响
当我们想研究不同sample的某个变量A之间的差异时,往往会因为其它一些变量B对该变量的固有影响,而影响不同sample变量A的比较,这个时候需要对sample变量A进行标准化之后才能进行比较.标准化的方法是对sample 的 A变量和B变量进行loess回归,拟合变量A关于变量B的函数 f(b),f(b)则表示在B的影响下A的理论取值,A-f(B)(A对f(b)残差)就可以去掉B变量对A变量的影响,此时残差值就可以作为标准化的A值在不同sample之间进行比较. Loess局部加权多项式回
R语言通过loess去除某个变量对数据的影响--CNV分析
当我们想研究不同sample的某个变量A之间的差异时,往往会因为其它一些变量B对该变量的固有影响,而影响不同sample变量A的比较,这个时候需要对sample变量A进行标准化之后才能进行比较.标准化的方法是对sample 的 A变量和B变量进行loess回归,拟合变量A关于变量B的函数 f(b),f(b)则表示在B的影响下A的理论取值,A-f(B)(A对f(b)残差)就可以去掉B变量对A变量的影响,此时残差值就可以作为标准化的A值在不同sample之间进行比较. Loess局部加权多项式回归
R语言学习 第一篇:变量和向量
R是向量化的语言,最突出的特点是对向量的运算不需要显式编写循环语句,它会自动地应用于向量的每一个元素.对象是R中存储数据的数据结构,存储在内存中,通过名称或符号访问.对象的名称由大小写字母.数字0-9.点号和下划线组成,名称是区分大小写的,并且不能以数字开头,特殊的对象名称可以通过界定符 `` 来转为合法的对象名称,注意,点号( . ) 被视为没有特殊含义的单字符. R语言非常灵活,例如: R语言区分大小写,不管是变量名和函数名,都是大小写敏感的. 直接给变量赋值,R中不能显式声明变量和类型:
R语言学习笔记—决策树分类
一.简介 决策树分类算法(decision tree)通过树状结构对具有某特征属性的样本进行分类.其典型算法包括ID3算法.C4.5算法.C5.0算法.CART算法等.每一个决策树包括根节点(root node),内部节点(internal node)以及叶子节点(leaf node). 根节点:表示第一个特征属性,只有出边没有入边,通常用矩形框表示. 内部节点:表示特征属性,有一条入边至少两条出边,通常用圆圈表示. 叶子节点:表示类别,只有一条入边没有出边,通常用三角表示. 决策树算法主要用于
R语言实战(十)处理缺失数据的高级方法
本文对应<R语言实战>第15章:处理缺失数据的高级方法 本文仅在书的基础上进行简单阐述,更加详细的缺失数据问题研究将会单独写一篇文章. 处理缺失值的一般步骤: 识别缺失数据: 检查导致数据缺失的原因: 删除包含缺失值的实例或用合理的数值代替(插补)缺失值. 缺失数据的分类: 完全随机缺失(MCAR):某变量的缺失数据与其他任何观测或未观测的变量都不相关: 随机缺失(MAR):某变量上的缺失数据与其他观测变量相关,与它自己的未观测值不相关: 非随机缺失(NMAR):不属于MCAR或MAR的变量.
R语言入门视频笔记--9--随机与数据描述分析
古典概型的样本总量是一定的,且每种可能的可能性是相同的, 1.中位数:median(x) 2.百分位数:quantile(x)或者quantile(x,probe=seq(0,1,0.2)) #后面这个是设置参数,零到一的范围,每隔0.2算一次 不知道叫啥的很方便的函数:fivenum(x,na.rm=TRUE) #输出五个数最大值.最小值.下四分位数.上四分位数.中位数 3.协方差:用于看两组数据之间的关系,看看是不是有一定的关联性 他有一个相关系数r,r越接近1,则相关性越高,反之,越接近零
吴裕雄--天生自然 R语言开发学习:分类(续二)
#-----------------------------------------------------------------------------# # R in Action (2nd ed): Chapter 17 # # Classification # # requires packaged rpart, party, randomForest, kernlab, rattle # # install.packages(c("rpart", "party&q
吴裕雄--天生自然 R语言开发学习:分类(续一)
#-----------------------------------------------------------------------------# # R in Action (2nd ed): Chapter 17 # # Classification # # requires packaged rpart, party, randomForest, kernlab, rattle # # install.packages(c("rpart", "party&q
吴裕雄--天生自然 R语言开发学习:分类
#-----------------------------------------------------------------------------# # R in Action (2nd ed): Chapter 17 # # Classification # # requires packaged rpart, party, randomForest, kernlab, rattle # # install.packages(c("rpart", "party&q
R语言randomForest包实现随机森林——iris数据集和kyphosis数据集
library(randomForest)model.forest<-randomForest(Species~.,data=iris)pre.forest<-predict(model.forest,iris)table(pre.forest,iris$Species) library(rpart)library(randomForest)model.forest<-randomForest(Kyphosis~.,data=kyphosis)pre.forest<-predict
R语言基础入门
请先安装好R和RStudio 如果不干别的,控制台就是一个内置计算器 2 * 3 #=> 6 sqrt(36) #=> 6, square root log10(100) #=> 2, log base 10 10 / 3 #=> 3.3, 10 by 3 10 %/% 3 #=> 3, quotient of 10 by 3 10 %% 3 #=> 1, remainder of 10 by 3 余数 分配符 a <- 10 # assign 10 to 'a'
R 再也不用愁变量太多跑回归太麻烦!R语言循环常用方法总结
在高维数据分析过程中,为了筛选出与目标结局相关的变量,通常会用到回归分析,但是因为自变量较多,往往要进行多次回归.这就是统计编程语言发挥作用的时候了 有些大神们认为超过3次的复制粘贴就可以考虑使用循环了,当然个人“承受能力较强”,在分析过程中还是经常会用复制粘贴来解决相当一部分的问题.但是当变量太多需要多次复制粘贴,并且还要对不同的过程设置不同的编号真的太麻烦了.比如有100个X,就要命名100个模型,从fit1到fit100,显然可操作性太差了. 所以循环必须派上用场,接下来将总结一下在R中使
R语言基础:数组&列表&向量&矩阵&因子&数据框
R语言基础:数组和列表 数组(array) 一维数据是向量,二维数据是矩阵,数组是向量和矩阵的直接推广,是由三维或三维以上的数据构成的. 数组函数是array(),语法是:array(dadta, dim),其中data必须是同一类型的数据,dim是各维的长度组成的向量. 1.产生一个三维和四维数组. 例1:xx <- array(1:24, c(3, 4, 2)) #一个三维数组 例2:yy <- array(1:36, c(2, 3, 3, 2)) #一个四维数组 2.dim()函数可
R语言笔记
R语言笔记 学习R语言对我来说有好几个地方需要注意的,我觉得这样的经验也适用于学习其他的新的语言. 语言的目标 我理解语言的目标就是这个语言是用来做什么的,为什么样的任务服务的,也就是设计这个语言的动机.比如C++是为系统编程服务的,java是为企业级应用服务的.R语言是用于统计分析,这样在R的系统中有大量的库(或者是package)用来实现特定的统计方法. 基本的数据类型 学习各个语言的第一步是了解这个语言的最基本的数据类型,这决定如何使用变量进行计算. 基本数据类型是直接由语言本身所定义的变
R语言进行机器学习方法及实例(一)
版权声明:本文为博主原创文章,转载请注明出处 机器学习的研究领域是发明计算机算法,把数据转变为智能行为.机器学习和数据挖掘的区别可能是机器学习侧重于执行一个已知的任务,而数据发掘是在大数据中寻找有价值的东西. 机器学习一般步骤 收集数据,将数据转化为适合分析的电子数据 探索和准备数据,机器学习中许多时间花费在数据探索中,它要学习更多的数据信息,识别它们的微小差异 基于数据训练模型,根据你要学习什么的设想,选择你要使用的一种或多种算法 评价模型的性能,需要依据一定的检验标准 改进模型的性能,有
机器学习与R语言:C5.0
#---------------------------------------- # 功能描述:演示C50建模过程 # 数据集:汉堡大学信贷模型,信贷数据 # #---------------------------------------- #第一步:收集数据 # import the CSV file credit <- read.csv("/Users/chenyangang/R语言/data/credit.csv", stringsAsFactors = TRUE) #
机器学习与R语言:kNN
#---------------------------------------- # 功能描述:演示kNN建模过程 # 数据集:威斯康星乳腺癌诊断 # #---------------------------------------- #第一步:收集数据 # import the CSV file wbcd <- read.csv("/Users/chenyangang/R语言/data/wisc_bc_data.csv", stringsAsFactors = FALSE)
R语言中文社区历史文章整理(类型篇)
R语言中文社区历史文章整理(类型篇) R包: R语言交互式绘制杭州市地图:leafletCN包简介 clickpaste包介绍 igraph包快速上手 jiebaR,从入门到喜欢 Catterplots包,让你绘制不一样的图 今天再来谈谈REmap包 ggplot2你需要知道的都在这... R访问数据库管理系统(通过RODBC包和RMySQL包两种方式) NLP——自然语言处理(三)text2vec包 Rattle:数据挖掘的界面化操作 借助caret包实现特征选择的工作 R语言的高质量图形
【数据分析 R语言实战】学习笔记 第四章 数据的图形描述
4.1 R绘图概述 以下两个函数,可以分别展示二维,三维图形的示例: >demo(graphics) >demo(persp) R提供了多种绘图相关的命令,可分成三类: 高级绘图命令:在图形设备上产生一个新的图区,它可能包括坐标轴.标签.标题等. 低级绘图命令:在一个己经存在的图形上加上更多的图形元素,如额外的点.线和标签. 交互式图形命令:允许交互式地用鼠标在一个已经存在的图形.上添加图形信息或者提取图形信息. 使用R语言作图,主要按照以下步骤进行: ①取原始数据,准备好绘图需要的变量. ②
Java-调用R语言和调用Python(前后端展示)
1. 背景 R语言和Python用于数据分析和数据处理,并生成相应的直方图和散点图 需要实现一个展示平台,后端使用Java,分别调用R语言和调用Python,并返回数据和图给前端显示 这个平台主要实现多维度数据的特征选择,以及数据集协变量偏移(Covariate shift)的纠正的功能 本质就是一个Java调用R语言以及Java调用Python的Demo,做得很简单,大神勿喷 2. 技术栈 Java 用的是 Springboot R语言 Python 前端用的是 Vue + ElementUI
热门专题
sql语句删除重复数据只保留一条
spring scheduled定时任务 cron 变化
easyui form提交数据刷新表格
wpf 打印到xps Graphics
dart socket和javasocket
L1-015跟奥巴马一起画方块
数据库,mvc,bootstrap之间的关系
不能指针输出包含0x00的数组
open files修改 指定文件
freemarker 数组包含
汇编sp与bp的区别
iOS苹果发布证书申请
threejs 导入stats.js
splitter怎么隐藏部分
Bootstrap5 按钮点击跳转
js水平居中和垂直居中怎么同时设置
ngnix 四层代理 limit_req_conn
arcgis安装教程10.2中文破解版
qt MaintenanceTool更新
nodejs PythonShell关闭