首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
R语言 KDE图如何调整带宽
2024-08-17
kdeplot(核密度估计图) & distplot
Seaborn是基于matplotlib的Python可视化库. 它提供了一个高级界面来绘制有吸引力的统计图形.Seaborn其实是在matplotlib的基础上进行了更高级的API封装,从而使得作图更加容易,不需要经过大量的调整就能使你的图变得精致.但应强调的是,应该把Seaborn视为matplotlib的补充,而不是替代物. kdeplot(核密度估计图) 核密度估计(kernel density estimation)是在概率论中用来估计未知的密度函数,属于非参数检验方法之一.通过核密度
R语言---热图的制作
>install.packages("gplots") > library("gplots")> p <- data.frame(read.table("test.txt",header = T, sep="\t"))> row.names(p) <- p$gene> p <- p[,2:21]> p_matrix<- data.matrix(p) > heat
R语言-时间序列图
1.时间序列图 plot()函数 > air<-read.csv("openair.csv") > plot(air$nox~as.Date(air$date,"%d/%m/%Y %H:%M"), #把年月日时分秒转换成日期格式 + type="l", + xlab="Time", ylab="Concentration (ppb)", + main="Time trend of
R语言-线图(二)
1.线图示例 plot()为高水平作图命令,axis().lines().legend()都为低水平作图命令 > rain<-read.csv("cityrain.csv") > plot(rain$Tokyo,type="b",lwd=2, #type ="b"表示即画散点也画直线,lwd设置线宽 + xaxt="n",ylim=c(0,300),col="black", #xaxt
大数据平台R语言web UI应用架构 设计与开发
1. 系统拓扑图 在日常业务分析中,R是非常常用的分析工具,而当数据量较大时,用R语言需要需用更多的时间来完成训练模型,spark作为大规模数据处理框架,采用内存计算,可以短时间内完成大量的数据的处理及计算模型,但缺点是不能图形展示,R语言的sparkly则提供了R语言和Spark的接口,实现了在数据量大的情况下,应用Spark的快速数据分析和处理能力结合R语言的图形化展示功能,方便业务分析,模型训练. 但是要想使多人同时共享R和Spark,还需要其他的相关组件,下图展示了所有相关的组件及应用:
[3]R语言在数据处理上的禀赋——par参数详解(一)
本文目录 公共参数列表 par 颜色相关 字体相关 字体大小相关 线条相关 符号相关 线条和符号大小相关 结束 本文首发:program-dog.blogspot.com 注1:本文也曾在csdn发布,不过无法忍受csdn超长时间的审核,迁移到博客圆了. 本作品采用知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可. 这一篇介绍par参数比较基础的几个参数用法,涉及颜色,字体,线条和符号,坐标轴,添加图例,组合做图留到下一篇文章. 上一篇文章已经详细的介绍了R语言可视化技术的
第四篇:R语言数据可视化之折线图、堆积图、堆积面积图
折线图简介 折线图通常用来对两个连续变量的依存关系进行可视化,其中横轴很多时候是时间轴. 但横轴也不一定是连续型变量,可以是有序的离散型变量. 绘制基本折线图 本例选用如下测试数据集: 绘制方法是首先调用ggplot函数选定数据集,并在aes参数中指明横轴纵轴.然后调用条形图函数geom_line()便可绘制出基本折线图.R语言示例代码如下: # 基函数 ggplot(BOD, aes(x = Time, y = demand)) + # 折线图函数 geom_line() 运行结果:
R语言绘制相对性关系图
准备 第一步就是安装R语言环境以及RStudio 图绘制准备 首先安装库文件,敲入指令,回车 install.packages('corrplot') 然后安装excel导入的插件,点击右上角import Dataset,选中From excel即可. 这些操作都很简单~~ 数据预处理 然后到了数据输入了,这么多数据,我们总不能一行输入吧?那得有多蠢 于是我们利用上了数据导入功能,当当当~~ 然而理想很丰满,现实却很蛋疼,导入的excel数据格式不是我们希望的矩阵格式ORZ! 哎,休息下喝杯茶,
R语言画图教程之盒形图
R语言画图教程之盒形图 我们之前有分享过一系列的R语言画图代码(PCA图.Pathway图.火山图.RDA图.热图),今天再来补充一个盒形图(箱形图)的代码. 以下代码只是示例,不能直接搬来用哦,注意看注释. --------------代码开始了------------- setwd("E:/") #改变工作目录 data=read.table("data.txt",header=T) #读取数据,"header=T"第一行为表头 mycolo
第六篇:R语言数据可视化之数据分布图(直方图、密度曲线、箱线图、等高线、2D密度图)
数据分布图简介 中医上讲看病四诊法为:望闻问切.而数据分析师分析数据的过程也有点相似,我们需要望:看看数据长什么样:闻:仔细分析数据是否合理:问:针对前两步工作搜集到的问题与业务方交流:切:结合业务方反馈的结果和项目需求进行数据分析. "望"的方法可以认为就是制作数据可视化图表的过程,而数据分布图无疑是非常能反映数据特征(用户症状)的.R语言提供了多种图表对数据分布进行描述,本文接下来将逐一讲解. 绘制基本直方图 本例选用如下测试集: 直方图的横轴为绑定变量区间分隔的取值范围,纵轴则表
R语言绘制QQ图
无论是直方图还是经验分布图,要从比较上鉴别样本是否处近似于某种类型的分布是困难的 QQ图可以帮我们鉴别样本的分布是否近似于某种类型的分布 R语言,代码如下: > qqnorm(w);qqline(w)> w <- c(75.0, 64.0, 47.4, 66.9, 62.2, 62.2, 58.7, 63.5,+ 66.6, 64.0, 57.0, 69.0, 56.9, 50.0, 72.0)> qqnorm(w);qqline(w)
R语言画棒状图(bar chart)和误差棒(error bar)
假设我们现在有CC,CG,GG三种基因型及三种基因型对应的表型,我们现在想要画出不同的基因型对应表型的棒状图及误差棒.整个命令最重要的就是最后一句了,用arrows函数画误差棒.用到的R语言如下: data<-read.csv("E:/model/data.csv",sep=" ",header=T)#导入数据data mean_CC<-mean(data[,1])#计算CC基因型对应的表型的平均值 mean_GG<-mean(data[,2])
R语言-画线图
R语言分高水平作图函数和低水平作图函数 高水平作图函数:可以独立绘图,例如plot() 低水平作图函数:必须先运行高水平作图函数绘图,然后再加画在已有的图上面 第一种方法:plot()函数 > sales<-read.csv("dailysales.csv", header=TRUE) #读取文件和列名 > plot(sales$units~as.Date(sales$date,"%d/%m/%y"), #修改日期格式 + type="l
R语言绘制花瓣图flower plot
R语言中有很多现成的R包,可以绘制venn图,但是最多支持5组,当组别数大于5时,venn图即使能够画出来,看上去也非常复杂,不够直观: 在实际的数据分析中,组别大于5的情况还是经常遇到的,这是就可以考虑用花瓣图来进行数据的可视化 比如下面这个例子: 来源于该链接 https://www.researchgate.net/figure/235681265_fig3_The-pan-genome-of-Sinorhizobium-The-flower-plots-and-Venn-diagram
R语言之脸谱图
脸谱图和星图类似,但它却比星图可以表示更多的数据维度.用脸谱来分析多维度数据,即将P个维度的数据用人脸部位的形状或大小来表征.脸谱图在平面上能够形象的表示多维度数据并给人以直观的印象,可帮助使用者形象记忆分析结果,提高判断能力,加快分析速度.目前已应用于多地域经济战略指标数据分析,空间数据可视化等领域. 脸谱图一般采用15个指标,各指标代表的面部特征为: 1 脸的高度 2脸的宽度3 脸型4嘴巴厚度 5, 嘴巴宽度6 微笑7 眼睛的高度8 眼睛宽度 9 头发长度 10 头发宽度11头发风格12
一幅图解决R语言绘制图例的各种问题
一幅图解决R语言绘制图例的各种问题 用R语言画图的小伙伴们有木有这样的感受,"命令写的很完整,运行没有报错,可图例藏哪去了?""图画的很美,怎么总是图例不协调?""啊~~啊,抓狂,图例盖住关键的点了.""怎么才能让图例指哪站哪?" "图例太长怎么办"-- 吐槽吐到累,不如多掌握几个图例(Legend)的软肋,更好地利用R语言绘图. legend(x, y = NULL, legend, fill = NUL
R语言:表格的线图转化
R语言:表格的线图转化 最先选取的是北京各区普通住宅成交十年(2016年及2006年)涨幅对比.这张图比较plain,主要拿来练习: 1.数据表格的基本整理及计算 2. 数据的初步分析 3.线图的基本绘图 图片来自网络 图片输入为excel,然后倒入到r程序中. install.packages("openxlsx") library(openxlsx) readFilePath<-"E:/citystock.xlsx" mydata<-read.xls
结合MATLAB、Python、R语言,在求得显著差异的边(节点对)之后,怎么画circle图
先来看看成果图: OK,开始画图: 实验背景声明:在脑影像分析中,我们首先构建脑网络,然后使用双样本t对比两组人的连接差异,然后使用以上的图进行可视化,一般红色连接代表显著升高,绿色代表显著下降.(非必须,根据实际需求设计,如上图中红色代表相应的连接差异与HAMD抑郁量表评分显著相关,绿色表示不相关).这里呢,我们研究了一组病人以及年龄性别匹配的健康被试的fMRI的数据,首先进行fMR
R语言与医学统计图形【5】饼图、条件图
R语言基础绘图系统 基础图形--饼图.克利夫兰点图.条件图 6.饼图 pie(rep(1,26),col=rainbow(26), labels = LETTERS[1:26], #标签 radius = 1) #半径 library(RColorBrewer) pie.myData <- c(5.8,27,0.2,21.1,12.8,33.1) diseasetypes <- c('上感','中风','外伤','昏厥','食物中毒','其他') names(pie.myData) <-
R语言与医学统计图形【4】直方图、金字塔图
R语言基础绘图系统 基础图形--直方图.金字塔图 3.直方图 参数设置及比较. op <- par(mfrow=c(2,3)) data <- rnorm(100,10,5) hist(data,col = 'light green') #默认分组 hist(data,col = 'sky blue',breaks = 15) #分成15组 hist(data,col = 'orange',breaks = seq(-5,25,1)) #自定义组距 hist(data,col = 'pink'
R语言与医学统计图形【3】条形图、误差图
R语言基础绘图系统 基础图形--条形图.误差图 3.条形图 barplot接收的数据是矩阵而非数据框. data <- sample(c(50:80),5) barplot(data,col=heat.colors(5)) my_matrix <- matrix(data=sample(10:40,9), nrow = 3, dimnames = list(c('A',"B",'C'), paste('dose',1:3))) barplot(t(my_matrix), b
热门专题
linux 用户三权力分配
ideal里web.xml的标签报红
.net mustachio 读取html
vs最大程度缩小文件
H.264中运动搜索的Max search rang
vip音乐解析下载的歌曲存在哪里
UE4 WidgetTree 头文件
log4j日志文件配置xml
ls-l显示当前目录下文件,如何给文件前面加上行号呢
yum升级ceph版本
echart3d饼状
js 循环修改数组对象的值
AlexNet18 优缺点
楞严经四种清净明诲宣化上人
vba sql开发效率
jordan标准型例题
RF框使用addCookie
菜鸟 css height
eclipse修改java环境变量
war包打包没有配置文件