首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
r语言holt指数平滑预测
2024-11-09
R语言与数据分析之九:时间内序列--HoltWinters指数平滑法
今天继续就指数平滑法中最复杂的一种时间序列:有增长或者减少趋势而且存在季节性波动的时间序列的预測算法即Holt-Winters和大家分享.这样的序列能够被分解为水平趋势部分.季节波动部分,因此这两个因素应该在算法中有相应的參数来控制. Holt-Winters算法中提供了alpha.beta和gamma 来分别相应当前点的水平.趋势部分和季节部分.參数的去执法范围都是0-1之间,而且參数接近0时.最近的观測值的影响权重就越小.我们以澳大利亚昆士兰州海滨纪念商品的月度销售日子为分析对象.老套路.咱
基于R语言的时间序列分析预测
数据来源: R语言自带 Nile 数据集(尼罗河流量) 分析工具:R-3.5.0 & Rstudio-1.1.453 #清理环境,加载包 rm(list=ls()) library(forecast) library(tseries) #趋势查看 plot(Nile) #平稳性检验 #自相关图 acf(Nile) #偏相关图 pacf(Nile) #也可以直接用tsdisplay查看 tsdisplay(Nile) #单位根检验 adf.test(Nile) 从自相关图上看,自相关系数没有快速衰
R语言的ARIMA模型预测
R通过RODBC连接数据库 stats包中的st函数建立时间序列 funitRoot包中的unitrootTest函数检验单位根 forecast包中的函数进行预测 差分用timeSeries包中diff stats包中的acf和pacf处理自相关和偏自相关stats包中的arima函数模型
Redhat 5.8系统安装R语言作Arima模型预测
请见Github博客:http://wuxichen.github.io/Myblog/timeseries/2014/09/02/RJavaonLinux.html
R语言 ggplot2 画平滑图
library(splines) library(ggplot2) dt1 <- structure(list(Age = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("o80", "u80"), class = "factor"), NoP = c(47L, 5
不知道怎么改的尴尬R语言的ARIMA模型预测
数据还有很多没弄好,程序还没弄完全好. > read.xlsx("H:/ProjectPaper/论文/1.xlsx","Sheet1") > item<- read.xlsx("H:/ProjectPaper/论文/1.xlsx","Sheet1") > item<- ts(item,start=c(2014)) > plot.ts(item) > itemdiff<- dif
R语言与数据分析之八:时间序列--霍尔特指数平滑法
上篇我和小伙伴们分享了简单指数平滑法,简单指数平滑法仅仅能预測那些处于恒定水平和没有季节变动的时间序列,今天和大家分享非恒定水平即有增长或者减少趋势的.没有季节性可相加模型的时间序列预測算法---霍尔特指数平滑法(Holt). Holt 指数平滑法预计当前时间的水平和斜率.其平滑水平是由两个參数控制.alpha:预计当前点水平.beta:预计当前点趋势部分斜率.两个參数都介于0-1之间.当參数越接近0,大部分最近的观測值的权值将较小. 我们以1866年到1911年每年女士裙子直径为案例,我们首先
【R语言学习】时间序列
时序分析会用到的函数 函数 程序包 用途 ts() stats 生成时序对象 plot() graphics 画出时间序列的折线图 start() stats 返回时间序列的开始时间 end() stats 返回时间序列的结束时间 frequency() stats 返回时间序列中时间点的个数 window() stats 对时序对象取子集 ma() forecast 拟合一个简单的移动平均模型 stl() stats 用LOESS光滑将时序分解为季节项.趋势项和随机项 monthplot()
基于R语言的时间序列指数模型
时间序列: (或称动态数列)是指将同一统计指标的数值按其发生的时间先后顺序排列而成的数列.时间序列分析的主要目的是根据已有的历史数据对未来进行预测.(百度百科) 主要考虑的因素: 1.长期趋势(Long-term trend) : 时间序列可能相当稳定或随时间呈现某种趋势. 时间序列趋势一般为线性的(linear),二次方程式的 (quadratic)或指数函数(exponential function). 2.季节性变动(Seasonal variation) 按时间变动,呈现重复性行为的序列
Holt Winter 指数平滑模型
1 指数平滑法 移动平均模型在解决时间序列问题上简单有效,但它们的计算比较难,因为不能通过之前的计算结果推算出加权移动平均值.此外,移动平均法不能很好的处理数据集边缘的数据变化,也不能应用于现有数据集的范围之外.因此,移动平均法的预测效果相对较差. 指数平滑法(exponential smoothing)是一种简单的计算方案,可以有效的避免上述问题.按照模型参数的不同,指数平滑的形式可以分为一次指数平滑法.二次指数平滑法.三次指数平滑法.其中一次指数平滑法针对没有趋势和季节性的序列,二次指数平滑
[译]如何使用Python构建指数平滑模型:Simple Exponential Smoothing, Holt, and Holt-Winters
原文连接:How to Build Exponential Smoothing Models Using Python: Simple Exponential Smoothing, Holt, and- 今年前12个月,iPhone XS将售出多少部?在埃隆·马斯克(Elon musk)在直播节目中吸食大麻之后,特斯拉的需求趋势是什么?这个冬天会暖和吗?(我住在加拿大.)如果你对这些问题感到好奇,指数平滑法可以通过建立模型来预测未来. 指数平滑方法为过去的观测分配指数递减的权重.得到的观测值越近
时间序列 预测分析 R语言
在对短期数据的预测分析中,我们经常用到时间序列中的指数平滑做数据预测,然后根据不同. 下面我们来看下具体的过程 x<-data.frame(rq=seq(as.Date('2016-11-15'),as.Date('2016-11-22'),by='day'), sr=c(300,697,511,1534,1155,1233,1509,1744)) xl<-ts(x$sr) #构建时间序列 plot.ts(xl) 从上图的结果来看,这是一个增长趋势的时间序列. 模型选择上我们可以依据以下标准进
R语言︱XGBoost极端梯度上升以及forecastxgb(预测)+xgboost(回归)双案例解读
XGBoost不仅仅可以用来做分类还可以做时间序列方面的预测,而且已经有人做的很好,可以见最后的案例. 应用一:XGBoost用来做预测 -------------------------------------------------- 一.XGBoost来历 xgboost的全称是eXtreme Gradient Boosting.正如其名,它是Gradient Boosting Machine的一个c++实现,作者为正在华盛顿大学研究机器学习的大牛陈天奇.他在研究中深感自己受制于现有库的计
时间序列挖掘-预测算法-三次指数平滑法(Holt-Winters)——三次指数平滑算法可以很好的保存时间序列数据的趋势和季节性信息
from:http://www.cnblogs.com/kemaswill/archive/2013/04/01/2993583.html 在时间序列中,我们需要基于该时间序列当前已有的数据来预测其在之后的走势,三次指数平滑(Triple/Three Order Exponential Smoothing,Holt-Winters)算法可以很好的进行时间序列的预测. 时间序列数据一般有以下几种特点:1.趋势(Trend) 2. 季节性(Seasonality). 趋势描述的是时间序列的整体走势
使用R语言预测产品销量
使用R语言预测产品销量 通过不同的广告投入,预测产品的销量.因为响应变量销量是一个连续的值,所以这个问题是一个回归问题.数据集共有200个观测值,每一组观测值对应一种市场情况. 数据特征 TV:对于一个给定市场的单一产品,用于电视上的广告费用(以千为单位) Radio:用于广告媒体上投资的广告费用 Newspaper:用于报纸媒体上的广告费用 响应 Sales:对应产品的销量 加载数据 > data <- read.csv("http://www-bcf.usc.edu/~garet
预测分析建模 Python与R语言实现
预测分析建模 Python与R语言实现 目录 前言 第1章 分析与数据科学1第2章 广告与促销10第3章 偏好与选择24第4章 购物篮分析31第5章 经济数据分析42第6章 运营管理56第7章 文本分析72第8章 情感分析93第9章 体育分析132第10章 空间数据分析146第11章 品牌和价格165第12章 大型的小数字游戏188附录A 数据科学方法191附录B 测量方法204附录C 案例研究212附录D 编码和脚本226参考文献259 下载地址:https://pan.baidu.com/s
R语言利用ROCR评测模型的预测能力
R语言利用ROCR评测模型的预测能力 说明 受试者工作特征曲线(ROC),这是一种常用的二元分类系统性能展示图形,在曲线上分别标注了不同切点的真正率与假正率.我们通常会基于ROC曲线计算处于曲线下方的面积AUC(area under curve),并以此峰面积来衡量相应分类模型的性能. 操作 继续使用telecom churn数据集作为样例数据集 library(caret) data(churn) str(churnTrain) churnTrain = churnTrain[,!names(
R语言︱处理缺失数据&&异常值检验、离群点分析、异常值处理
在数据挖掘的过程中,数据预处理占到了整个过程的60% 脏数据:指一般不符合要求,以及不能直接进行相应分析的数据 脏数据包括:缺失值.异常值.不一致的值.重复数据及含有特殊符号(如#.¥.*)的数据 数据清洗:删除原始数据集中的无关数据.重复数据.平滑噪声数据.处理缺失值.异常值等 缺失值处理:删除记录.数据插补和不处理 主要用到VIM和mice包 install.packages(c("VIM","mice")) 1.处理缺失值的步骤 步骤: (1)识别缺失数据:
R语言 ggplot2包
R语言 ggplot2包的学习 分析数据要做的第一件事情,就是观察它.对于每个变量,哪些值是最常见的?值域是大是小?是否有异常观测? ggplot2图形之基本语法: ggplot2的核心理念是将绘图与数据分离,数据相关的绘图与数据无关的绘图分离ggplot2是按图层作图ggplot2保有命令式作图的调整函数,使其更具灵活性ggplot2将常见的统计变换融入到了绘图中.ggplot的绘图有以下几个特点:第一,有明确的起始(以ggplot函数开始)与终止(一句语句一幅图):其二,图层之间的叠加
R语言函数总结(转)
R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头,并且如果以 . 开头,第二个字符不允许是数字. 基本命令要么是表达式(expressions)要么就是 赋值(assignments). 命令可以被 (;)隔开,或者另起一行. 基本命令可以通过大括弧({和}) 放在一起构成一个复合表达式(compound expression). 一行中,从井号(#)开始到句子收尾之间的语句就是是注释. R是动态类型.强类型的语
热门专题
java中Settings在哪
postgres如何导入数据dmp
ios AFN发送请求
帝国 cms添加字段作为下拉框的选项
beacon蓝牙广播包
C# spreadsheetcontrol 设置打印区域
gmt中gawk画站点
几何变换halcon
获取数组最后一个元素
python天气时钟简介
.net6 mqtt实现websoket服务器
vscode python .以后不出来提示
android TextClock 时分秒
主机上没有虚拟机网络适配器VMnet8
DataSet里面只取几列数据
ubuntu 调整img文件大小
erlang bool取反
ios transform 之后的位置
C函数声明和定义的区别
tornado库怎么下载