首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
r语言step不能继续进行
2024-09-03
R语言错误的提示(中英文翻译)
# Chinese translations for R package # Copyright (C) 2005 The R Foundation # This file is distributed under the same license as the PACKAGE package. # 陈斐 <feic@normipaiva.com>, 2006. # 邓小冬 DENG Xiaodong <xd_deng@hotmail.com>, 2015. # msgid &qu
如何在R语言中使用Logistic回归模型
在日常学习或工作中经常会使用线性回归模型对某一事物进行预测,例如预测房价.身高.GDP.学生成绩等,发现这些被预测的变量都属于连续型变量.然而有些情况下,被预测变量可能是二元变量,即成功或失败.流失或不流失.涨或跌等,对于这类问题,线性回归将束手无策.这个时候就需要另一种回归方法进行预测,即Logistic回归. 在实际应用中,Logistic模型主要有三大用途: 1)寻找危险因素,找到某些影响因变量的"坏因素",一般可以通过优势比发现危险因素: 2)用于预测,可以预测某种情况发生的概
R语言解读多元线性回归模型
转载:http://blog.fens.me/r-multi-linear-regression/ 前言 本文接上一篇R语言解读一元线性回归模型.在许多生活和工作的实际问题中,影响因变量的因素可能不止一个,比如对于知识水平越高的人,收入水平也越高,这样的一个结论.这其中可能包括了因为更好的家庭条件,所以有了更好的教育:因为在一线城市发展,所以有了更好的工作机会:所处的行业赶上了大的经济上行周期等.要想解读这些规律,是复杂的.多维度的,多元回归分析方法更适合解读生活的规律. 由于本文为非统计的专业
R语言学习笔记:因子
R语言中的因子就是factor,用来表示分类变量(categorical variables),这类变量不能用来计算而只能用来分类或者计数. 可以排序的因子称为有序因子(ordered factor). factor() 用来生成因子数据对象,语法是: factor(data, levels, labels, ...) 其中data是数据,levels是因子的级别向量,labels是因子的标签向量. 以我的10个月的fitbit数据为例,创建一个因子 fitbit <- read.csv("
R语言学习笔记:字符串处理
想在R语言中生成一个图形文件的文件名,前缀是fitbit,后面跟上月份,再加上".jpg",先不百度,试了试其它语言的类似语法,没一个可行的: C#中:"fitbit" + month + ".jpg" VB:"fitbit" & month & ".jpg" Haskell:"fitbit" ++ month ++ ".jpg" 还想到concat之
R语言学习笔记:日期处理
1.取出当前日期 Sys.Date() [1] "2014-10-29" date() #注意:这种方法返回的是字符串类型 [1] "Wed Oct 29 20:36:07 2014" 2.在R中日期实际是double类型,是从1970年1月1日以来的天数 typeof(Sys.Date()) [1] "double" 3.转换为日期 用as.Date()可以将一个字符串转换为日期值,默认格式是yyyy-mm-dd. as.Date("
用R语言分析我的fitbit计步数据
目标:把fitbit的每日运动记录导入到R语言中进行分析,画出统计图表来 已有原始数据:fitbit2014年每日的记录电子表格文件,全部数据点此下载,示例如下: 日期 消耗卡路里数 步 距离 攀爬楼层数 久坐不动的分钟数 不太活跃分钟数 中度活跃分钟数 非常活跃分钟数 2014年4月27日 2736 16581 11.84 7 1111 131 117 81 2014年4月28日 2514 12622 9.01 6 910 136 59 76 2014年4月29日 2231 8357 5.97
R 语言画图的基本参数
R 语言画图的基本参数 点 点的种类 点的种类参数为 pch,每一种符号对应一个数字编号 # 点有25种,为了展示25种点 x = 1:25 y = 1:25 x ## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 ## [24] 24 25 plot(x, x, pch = x) # 在图上随意添加点 lines(10, 15, type = "b", pch = 5) # type的含义 plot(x
R语言 逐步回归分析
逐步回归分析是以AIC信息统计量为准则,通过选择最小的AIC信息统计量,来达到删除或增加变量的目的. R语言中用于逐步回归分析的函数 step() drop1() add1() #1.载入数据 首先对数据进行多元线性回归分析 tdata<-data.frame( x1=c( , ,,, ,, , , ,, ,,), x2=c(,,,,,,,,,,,,), x3=c( ,, , , , ,,,, ,, , ), x4=c(,,,,,, ,,,,,,), Y =c(78.5,74.3,
数据分析与R语言
数据结构 创建向量和矩阵 函数c(), length(), mode(), rbind(), cbind() 求平均值,和,连乘,最值,方差,标准差 函数mean(), sum(), min(), max(), var(), sd(), prod() 帮助文档 函数help() 生成向量 seq() 生成字母序列letters 新建向量 Which()函数,rev()函数,sort()函数 生成矩阵 函数matrix() 矩阵运算 函数t(),矩阵加减 矩阵运算 矩阵相乘,函数diag() 矩阵
用R语言 做回归分析
使用R做回归分析整体上是比较常规的一类数据分析内容,下面我们具体的了解用R语言做回归分析的过程. 首先,我们先构造一个分析的数据集 x<-data.frame(y=c(102,115,124,135,148,156,162,176,183,195), var1=runif(10,min=1,max=50), var2=runif(10,min=100,max=200), var3=c(235,321,412,511,654,745,821,932,1020,1123)) 接下来,我们进行简单的一
R语言︱SNA-社会关系网络—igraph包(社群划分、画图)(三)
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 社群划分跟聚类差不多,参照<R语言与网站分析>第九章,社群结构特点:社群内边密度要高于社群间边密度,社群内部连接相对紧密,各个社群之间连接相对稀疏. 社群发现有五种模型:点连接.随机游走.自旋玻璃.中间中心度.标签发现. 评价社群三个指标:模块化指标Q.网络聚类系数.网络密度. 画图有三种方法:直接plot.书中自编译函数.SVG. ----
R语言︱机器学习模型评估方案(以随机森林算法为例)
笔者寄语:本文中大多内容来自<数据挖掘之道>,本文为读书笔记.在刚刚接触机器学习的时候,觉得在监督学习之后,做一个混淆矩阵就已经足够,但是完整的机器学习解决方案并不会如此草率.需要完整的评价模型的方式. 常见的应用在监督学习算法中的是计算平均绝对误差(MAE).平均平方差(MSE).标准平均方差(NMSE)和均值等,这些指标计算简单.容易理解:而稍微复杂的情况下,更多地考虑的是一些高大上的指标,信息熵.复杂度和基尼值等等. 本篇可以用于情感挖掘中的监督式算法的模型评估,可以与博客对着看:R语言
新工具︱微软Microsoft Visual Studio的R语言模块下载试用Ing...(尝鲜)
笔者:前几天看到了以下的图片,着实一惊.作为R语言入门小菜鸟,还是觉得很好看,于是花了一点时间下载下来试用了一下,觉得还是挺高大上的. 就是英文不好是硬伤.下面贴给小白,我当时的下载步骤与遇见的问题. 大神请绕道. 欢迎会用的人,能够指导一下俺,俺的确不太熟悉这个界面与应用方式. 官方解释: Visual Stuido R工具预览版主要特性: •编辑器:为R脚本和功能带来完整的编辑体验,包括分离/合并窗口.语法高亮等: •智能感知(即自动补全):在编辑器和交互R窗口中均可用: •R交互窗口:在V
碎片︱R语言与深度学习
笔者:受alphago影响,想看看深度学习,但是其在R语言中的应用包可谓少之又少,更多的是在matlab和python中或者是调用.整理一下目前我看到的R语言的材料: ------------------------------------------------------------ 近期,弗莱堡大学的Oksana Kutina 和 Stefan Feuerriegel发表了一篇名为<深入比较四个R中的深度学习包>的博文.其中,四个R包的综述如下: MXNet: MXNet深度学习库的R接
logistic逻辑回归公式推导及R语言实现
Logistic逻辑回归 Logistic逻辑回归模型 线性回归模型简单,对于一些线性可分的场景还是简单易用的.Logistic逻辑回归也可以看成线性回归的变种,虽然名字带回归二字但实际上他主要用来二分类,区别于线性回归直接拟合目标值,Logistic逻辑回归拟合的是正类和负类的对数几率. 假设有一个二分类问题,输出为y∈{0,1} 定义sigmoid函数: 用sigmoid函数的输出是0,1之间,用来拟合y=1的概率,其函数R语言画图如下: x = seq(-5, 5, 0.1) y = 1
多元线性回归公式推导及R语言实现
多元线性回归 多元线性回归模型 实际中有很多问题是一个因变量与多个自变量成线性相关,我们可以用一个多元线性回归方程来表示. 为了方便计算,我们将上式写成矩阵形式: Y = XW 假设自变量维度为N W为自变量的系数,下标0 - N X为自变量向量或矩阵,X维度为N,为了能和W0对应,X需要在第一行插入一个全是1的列. Y为因变量 那么问题就转变成,已知样本X矩阵以及对应的因变量Y的值,求出满足方程的W,一般不存在一个W是整个样本都能满足方程,毕竟现实中的样本有很多噪声.最一般的求解W的方式是最小
R语言函数总结(转)
R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头,并且如果以 . 开头,第二个字符不允许是数字. 基本命令要么是表达式(expressions)要么就是 赋值(assignments). 命令可以被 (;)隔开,或者另起一行. 基本命令可以通过大括弧({和}) 放在一起构成一个复合表达式(compound expression). 一行中,从井号(#)开始到句子收尾之间的语句就是是注释. R是动态类型.强类型的语
R语言学习 第一篇:变量和向量
R是向量化的语言,最突出的特点是对向量的运算不需要显式编写循环语句,它会自动地应用于向量的每一个元素.对象是R中存储数据的数据结构,存储在内存中,通过名称或符号访问.对象的名称由大小写字母.数字0-9.点号和下划线组成,名称是区分大小写的,并且不能以数字开头,特殊的对象名称可以通过界定符 `` 来转为合法的对象名称,注意,点号( . ) 被视为没有特殊含义的单字符. R语言非常灵活,例如: R语言区分大小写,不管是变量名和函数名,都是大小写敏感的. 直接给变量赋值,R中不能显式声明变量和类型:
R语言学习笔记:基础知识
1.数据分析金字塔 2.[文件]-[改变工作目录] 3.[程序包]-[设定CRAN镜像] [程序包]-[安装程序包] 4.向量 c() 例:x=c(2,5,8,3,5,9) 例:x=c(1:100) 表示把1 - 100的所有数字都给x这个变量 5.查看x的类型:>mode(x) 6.查看x的长度:>length(x) 7.将两个向量组成一个矩阵: >rbind(x1, x2) 注:r是row的意思,即行,按行组成矩阵. >cbind(x1, x2) 注c是column的意思,
R语言缺点
R的优点:免费,开源,体积小.缺点:对大文本处理差,另外一个也在于开源,package如果出错,烦死你.当你跑比较大的simulation,对效率有要求的时候,有时还是不得不用C,这可能是10小时和10分钟的差别,毫不夸张.SAS流行于公司,R流行于研究机构和大学数据分析不是单纯的靠软件来做的,需要很好的数学基础. 统计学工具各有千秋.https://englianhu.wordpress.com/statistics/学了R,可以免去学spss,matalab,ucinet等等众多的软件,可以
热门专题
XMLHttpRequest 异步跨域
fix和fast 协议
bootdiskutility下载
repo 一直提示rebasing
@PostConstruct和@PreConstruct
QVector常见用法
matlab怎么画柱状图
BLE的数据类型有哪些
jmeter阶梯加压,如何判断性能拐点
seleniu div弹出层定位
pip还原windows
rc 文件 编译 res
识别汉字,python
卸载 elasticsearch
git多ssh免密登录
怎么看py库的对应文档
unity 3d 进度条
虚拟机 mac os
SQL PLUE备份Oracle 数据库
git branch 提交时间排序