二项分布 | Binomial distribution 泊松分布 | Poisson Distribution 正态分布 | Normal Distribution | Gaussian distribution 负二项分布 | Negative binomial distribution 指数分布 | Exponential Distribution Βeta分布 | beta distribution Βeta二项分布 | Beta-binomial distribution 几何分布
绘制了一张导图,有不对的地方欢迎指正: 下载地址 机器学习中,特征是很关键的.其中包括,特征的提取和特征的选择.他们是降维的两种方法,但又有所不同: 特征抽取(Feature Extraction):Creatting a subset of new features by combinations of the exsiting features.也就是说,特征抽取后的新特征是原来特征的一个映射. 特征选择(Feature Selection):choosing a subset of all
记要 今天在计算分类模型自行区间时,用到了R中正太分布的qnorm函数,这里做简单记要,作为备忘. R中自带了很多概率分布的函数,如正太分布,二次分布,卡放分布,t分布等,这些分布的函数都有一个共性,每个分布拥有4个带有d,p,q,r前缀的函数.比如正太分布,有dnorm,pnorm,qnorm和rnorm.这几个前缀的意义如下: d Density的缩写,表示密度函数.举个例子,标准正太分布x=0对应的值可以用dnorm(0)计算 p Probability的缩写,表示概率函数.举个例子,