时间序列(time series)是一系列有序的数据.通常是等时间间隔的采样数据.如果不是等间隔,则一般会标注每个数据点的时间刻度. time series data mining 主要包括decompose(分析数据的各个成分,例如趋势,周期性),prediction(预测未来的值),classification(对有序数据序列的feature提取与分类),clustering(相似数列聚类)等. 这篇文章主要讨论prediction(forecast,预测)问题. 即已知历史的数据,如何准确
SELECT L.C# As 课程ID,L.score AS 最高分,R.score AS 最低分 FROM SC L ,SC AS R WHERE L.C# = R.C# and L.score = (SELECT MAX(IL.score) FROM SC AS IL,Student AS IM WHERE L.C# = IL.C# and IM.S#=IL.S# GROUP BY IL.C#) AND R.Score = (SELECT MIN(IR.score) FROM SC AS I
这是pytorch官方的一个例子 官方教程地址:http://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html#sphx-glr-beginner-blitz-cifar10-tutorial-py 代码如下 # coding=utf-8 import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable import