首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
rabbitmq怎么保证消息不重复消费
2024-09-05
关于MQ的几件小事(三)如何保证消息不重复消费
1.幂等性 幂等(idempotent.idempotence)是一个数学与计算机学概念,常见于抽象代数中. 在编程中一个幂等操作的特点是其任意多次执行所产生的影响均与一次执行的影响相同.幂等函数,或幂等方法,是指可以使用相同参数重复执行,并能获得相同结果的函数.这些函数不会影响系统状态,也不用担心重复执行会对系统造成改变.例如,"setTrue()"函数就是一个幂等函数,无论多次执行,其结果都是一样的.更复杂的操作幂等保证是利用唯一交易号(流水号)实现. 简单来说,幂等性就是一个数据
springboot + rabbitmq发送邮件(保证消息100%投递成功并被消费)
前言: RabbitMQ相关知识请参考: https://www.jianshu.com/p/cc3d2017e7b3 Linux安装RabbitMQ请参考: https://www.jianshu.com/p/ee9f7594212b Windows安装RabbitMQ请参考: https://www.jianshu.com/p/c7726ba4b046 一.先扔一张图 说明: 本文涵盖了关于RabbitMQ很多方面的知识点, 如: 消息发送确认机制 消费确认机制 消息的重新投递 消费幂等性,
(转载)springboot + rabbitmq发送邮件(保证消息100%投递成功并被消费)
转载自https://www.jianshu.com/p/dca01aad6bc8 一.先扔一张图 image.png 说明: 本文涵盖了关于RabbitMQ很多方面的知识点, 如: 消息发送确认机制 消费确认机制 消息的重新投递 消费幂等性, 等等 这些都是围绕上面那张整体流程图展开的, 所以有必要先贴出来, 见图知意 二.实现思路 简略介绍163邮箱授权码的获取 编写发送邮件工具类 编写RabbitMQ配置文件 生产者发起调用 消费者发送邮件 定时任务定时拉取投递失败的消息, 重新投递
RabbitMQ 入门系列:7、保障消息不重复消费:产生消息的唯一ID。
系列目录 RabbitMQ 入门系列:1.MQ的应用场景的选择与RabbitMQ安装. RabbitMQ 入门系列:2.基础含义:链接.通道.队列.交换机. RabbitMQ 入门系列:3.基础含义:持久化.排它性.自动删除.强制性.路由键. RabbitMQ 入门系列:4.基础编码:官方SDK使用:链接创建.单例改造.发送消息.接收消息. RabbitMQ 入门系列:5.基础编码:交换机的进阶介绍及编码方式. RabbitMQ 入门系列:6.保障消息:不丢失:发送方.Rabbit存储端.接收方
高可用保证消息绝对顺序消费的BROKER设计方案
转自: http://www.infoq.com/cn/articles/high-availability-broker-design?utm_source=tuicool&utm_medium=referral 在要求严格顺序消息的场景下,消息的发送者,BROKER端(BROKER端和消息存储放在一起),消息的消费者都要求按照顺序进行,三者任何一个环节的乱序都会导致消息最终的消费顺序被打乱. 如果为每一个消息维护一个有序的ID,发送和存储消息无序,消费逻辑会变得非常复杂,消费端要对消息进行重
RabbitMQ 如何保证消息不丢失?
RabbitMQ一般情况很少丢失,但是不能排除意外,为了保证我们自己系统高可用,我们必须作出更好完善措施,保证系统的稳定性. 下面来介绍下,如何保证消息的绝对不丢失的问题,下面分享的绝对干货,都是在知名互联网产品的产线中使用. 1.消息持久化 2.ACK确认机制 3.设置集群镜像模式 4.消息补偿机制 第一种:消息持久化 RabbitMQ 的消息默认存放在内存上面,如果不特别声明设置,消息不会持久化保存到硬盘上面的,如果节点重启或者意外crash掉,消息就会丢失. 所以就要对消息进行持久化处理.
RabbitMQ如何保证消息99.99%被发送成功?
1. 本篇概要 RabbitMQ针对这个问题,提供了以下几个机制来解决: 生产者确认 持久化 手动Ack 本篇博客我们先讲解下生产者确认机制,剩余的机制后续单独写博客进行讲解. 2. 生产者确认 要想保证消息不丢失,首先我们得保证生产者能成功的将消息发送到RabbitMQ服务器. 但在之前的示例中,当生产者将消息发送出去之后,消息到底有没有正确地到达服务器呢?如果不进行特殊配置,默认情况下发送消息的操作是不会返回任何消息给生产者的,也就是默认情况下生产者是不知道消息有没有正确的到达服务器. 从b
rabbitmq如何保证消息可靠性不丢失
目录 生产者丢失消息 代码模拟 事务 confirm模式确实 数据退回监听 MQ事务相关软文推荐 MQ丢失信息 消费者丢失信息 之前我们简单介绍了rabbitmq的功能.他的作用就是方便我们的消息解耦.紧接着问题就会暴露出来.解耦就设计到双方系统不稳定问题.在mq中有生产者.mq.消费者三个角色.其中一个角色down机或者重启后.就设计到消息的丢失问题. 因为MQ整个消息周期设计到上述的三个角色,所以我们从这个三个角色开始讨论丢失数据的情况.并如何解决 生产者丢失消息 在生产数据程序中,消息已经
如何确保消息正确地发送至 RabbitMQ? 如何确保消息接收方消费了消息?
发送方确认模式 将信道设置成 confirm 模式(发送方确认模式),则所有在信道上发布的消息都 会被指派一个唯一的 ID. 一旦消息被投递到目的队列后,或者消息被写入磁盘后(可持久化的消息),信 道会发送一个确认给生产者(包含消息唯一 ID). 如果 RabbitMQ 发生内部错误从而导致消息丢失,会发送一条 nack(not acknowledged,未确认)消息. 发送方确认模式是异步的,生产者应用程序在等待确认的同时,可以继续发送消 息.当确认消息到达生产者应用程序,生产者应用程序的回调
SpringBoot整合RabbitMQ,实现消息发送和消费以及多个消费者的情况
下载安装Erlang和RabbitMQ Erlang和RabbitMQ:https://www.cnblogs.com/theRhyme/p/10069611.html AMQP协议 https://www.cnblogs.com/theRhyme/p/9578675.html 项目创建和依赖 推荐SpringCloud项目在线创建:https://start.spring.io/ 不用上面这个也行,下面有代码和依赖: gradle的依赖,和maven差不多: buildscript { ext
kafka 分布式(不是单机)的情况下,如何保证消息的顺序消费?
Kafka 分布式的单位是 partition,同一个 partition 用一个 write ahead log 组织, 所以可以保证 FIFO 的顺序.不同 partition 之间不能保证顺序.但是绝大多数用 户都可以通过 message key 来定义,因为同一个 key 的 message 可以保证只发 送到同一个 partition. Kafka 中发送 1 条消息的时候,可以指定(topic, partition, key) 3 个参数. partiton 和 key 是可选的.如
如何确保消息正确地发送至 RabbitMQ?如何确保消息接收方消费了消息?
发送方确认模式 将信道设置成 confirm 模式(发送方确认模式),则所有在信道上发布的消息都会被指派一个唯一的 ID.一旦消息被投递到目的队列后,或者消息被写入磁盘后(可持久化的消息),信道会发送一个确认给生产者(包含消息唯一 ID). 如果 RabbitMQ 发生内部错误从而导致消息丢失,会发送一条 nack(notacknowledged,未确认)消息. 发送方确认模式是异步的,生产者应用程序在等待确认的同时,可以继续发送消息.当确认消息到达生产者应用程序,生产者应用程序的回调方法就会被
关于MQ的几件小事(二)如何保证消息队列的高可用
1.RabbitMQ的高可用 RabbitMQ基于主从模式实现高可用.RabbitMQ有三种模式:单机模式,普通集群模式,镜像集群模式. (1)单机模式: 单机模式就是demo级别的,生产中不会有人使用. (2)普通集群模式 普通集群模式就是在多台机器上启动多个rabbitmq实例,每个机器启动一个.但是创建的queue只会放在一个rabbitmq实例上面,但是其他的实例都同步了这个queue的元数据.在你消费的时候,如果连接到了另一个实例,他会从拥有queue的那个实例获取消息然后再返回给你.
关于MQ的几件小事(四)如何保证消息不丢失
1.mq原则 数据不能多,也不能少,不能多是说消息不能重复消费,这个我们上一节已解决:不能少,就是说不能丢失数据.如果mq传递的是非常核心的消息,支撑核心的业务,那么这种场景是一定不能丢失数据的. 2.丢失数据场景 丢数据一般分为两种,一种是mq把消息丢了,一种就是消费时将消息丢了.下面从rabbitmq和kafka分别说一下,丢失数据的场景, (1)rabbitmq A:生产者弄丢了数据 生产者将数据发送到rabbitmq的时候,可能在传输过程中因为网络等问题而将数据弄丢了. B:rabbit
RabbitMQ高级之如何保证消息可靠性?
人生终将是场单人旅途,孤独之前是迷茫,孤独过后是成长. 楔子 本篇是消息队列RabbitMQ的第四弹. RabbitMQ我已经写了三篇了,基础的收发消息和基础的概念我都已经写了,学任何东西都是这样,先基础的上手能用,然后遇到问题再去解决,无法理解就去深入源码,随着时间的积累对这一门技术的理解也会随之提高. 基础操作已经熟练后,相信大家不可避免的会生出向那更高处攀登的心来,今天我就罗列一些RabbitMQ比较高级的用法,有些用得到有些用不上,但是一定要有所了解,因为大部分情况我们都是面向面试学习~
RocketMQ(消息重发、重复消费、事务、消息模式)
分布式开放消息系统(RocketMQ)的原理与实践 RocketMQ基础:https://github.com/apache/rocketmq/tree/rocketmq-all-4.5.1/docs/cn 分布式消息系统作为实现分布式系统可扩展.可伸缩性的关键组件,需要具有高吞吐量.高可用等特点.而谈到消息系统的设计,就回避不了两个问题: 消息的顺序问题 消息的重复问题 RocketMQ作为阿里开源的一款高性能.高吞吐量的消息中间件,它是怎样来解决这两个问题的?RocketMQ 有哪些关键特性
RabbitMQ保证消息的顺序性
当我们的系统中引入了MQ之后,不得不考虑的一个问题是如何保证消息的顺序性,这是一个至关重要的事情,如果顺序错乱了,就会导致数据的不一致. 比如:业务场景是这样的:我们需要根据mysql的binlog日志同步一个数据库的数据到另一个库中,加如在binlog中对同一条数据做了insert,update,delete操作,我们往MQ顺序写入了insert,update,delete操作的三条消息,那么根据分析,最终同步到另一个库中,这条数据是被删除了的.但是,如果这三条消息不是按照inse
kafka如何保证不重复消费又不丢失数据_Kafka写入的数据如何保证不丢失?
我们暂且不考虑写磁盘的具体过程,先大致看看下面的图,这代表了 Kafka 的核心架构原理. Kafka 分布式存储架构 那么现在问题来了,如果每天产生几十 TB 的数据,难道都写一台机器的磁盘上吗?这明显是不靠谱的啊!所以说,这里就得考虑数据的分布式存储了,我们结合 Kafka 的具体情况来说说.在 Kafka 里面,有一个核心的概念叫做"Topic",这个 Topic 你就姑且认为是一个数据集合吧.举个例子,如果你现在有一份网站的用户行为数据要写入 Kafka,你可以搞一个 Topi
kafka 保证消息被消费和消息只消费一次
1. 保证消息被消费 即使消息发送到了消息队列,消息也不会万无一失,还是会面临丢失的风险. 我们以 Kafka 为例,消息在Kafka 中是存储在本地磁盘上的, 为了减少消息存储对磁盘的随机 I/O,一般我们会将消息写入到操作系统的 Page Cache 中,然后在合适的时间将消息刷新到磁盘上. 例如,Kafka 可以配置当达到某一时间间隔,或者累积一定的消息数量的时候再刷盘,也就是所谓的异步刷盘. 不过,如果发生机器掉电或者机器异常重启,那么 Page Cache 中还没有来得及刷盘的消息就会
消费端如何保证消息队列MQ的有序消费
消息无序产生的原因 消息队列,既然是队列就能保证消息在进入队列,以及出队列的时候保证消息的有序性,显然这是在消息的生产端(Producer),但是往往在生产环境中有多个消息的消费端(Consumer),尽管消费端在拉取消息时是有序的,但各个消息由于网络等方面原因无法保证在各个消费端中处理时有序. 场景分析 先后两次修改了商品信息,消息A和消息B先后同步写入MySQL,接着异步写入消息队列中发送消息,此时消息队列生产端(Producer)按时序先后发出了A和B两条消息(消息A先发出,消息B后发出)
热门专题
idea2019激活码生成器
getSupportFragmentManager不可用
PyQt5 布局管理
idea使用本地jar包
Visio 2016无法删除和移动怎么设置
win10装step5.6 许可证出现问题
numpy计算杰卡德相关系数
torch.optim.Adam为什么每次就减去固定的值
vue 的element的导航如何动态获取菜单
判断 moodle的用户最多
ora 从一个表更新一个字段到另一个表
INTEL8086 指令编码表
pwm 通道配置 全局变量
_twinmain参数由来
Visual Studio 2019 离线安装包
mybatis返回的是逗号拼接的字符串
react中为什么哈希路由不显示#
怎么把jdk传到linux虚拟机里
yaml日期动态 python
git 创新新的branch