首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
RANSAC拟合出的直线方程
2024-11-06
RANSAC介绍(Matlab版直线拟合+平面拟合)
https://blog.csdn.net/u010128736/article/details/53422070
PCL使用RANSAC拟合三位平面
1.使用PCL工具 //创建一个模型参数对象,用于记录结果 pcl::ModelCoefficients::Ptr coefficients(new pcl::ModelCoefficients); //inliers表示误差能容忍的点,记录点云序号 pcl::PointIndices::Ptr inliers(new pcl::PointIndices); //创建一个分割器 pcl::SACSegmentation<pcl::PointXYZ> seg; //Optional,设置结果平面
RANSAC拟合算法
最小二乘法只适合与误差较小的情况.试想一下这种情况,假使需要从一个噪音较大的数据集中提取模型(比方说只有20%的数据时符合模型的)时,最小二乘法就显得力不从心了. 算法简介 随机抽样一致算法(RANdom SAmple Consensus,RANSAC).它是一种迭代的方法,用来在一组包含离群的被观测数据中估算出数学模型的参数. RANSAC是一个非确定性算法,在某种意义上说,它会产生一个在一定概率下合理的结果,其允许使用更多次的迭代来使其概率增加.此RANSAC算法在1981年由Fischle
转悠望南山 Python闲谈(二)聊聊最小二乘法以及leastsq函数
1 最小二乘法概述 自从开始做毕设以来,发现自己无时无刻不在接触最小二乘法.从求解线性透视图中的消失点,m元n次函数的拟合,包括后来学到的神经网络,其思想归根结底全都是最小二乘法. 1-1 “多线→一点”视角与“多点→一线”视角 最小二乘法非常简单,我把它分成两种视角描述: (1)已知多条近似交汇于同一个点的直线,想求解出一个近似交点:寻找到一个距离所有直线距离平方和最小的点,该点即最小二乘解: (2)已知多个近似分布于同一直线上的点,想拟合出一个直线方程:设该直线方程为y=kx+b,调整参
Python闲谈(二)聊聊最小二乘法以及leastsq函数
1 最小二乘法概述 自从开始做毕设以来,发现自己无时无刻不在接触最小二乘法.从求解线性透视图中的消失点,m元n次函数的拟合,包括后来学到的神经网络,其思想归根结底全都是最小二乘法. 1-1 “多线→一点”视角与“多点→一线”视角 最小二乘法非常简单,我把它分成两种视角描述: (1)已知多条近似交汇于同一个点的直线,想求解出一个近似交点:寻找到一个距离所有直线距离平方和最小的点,该点即最小二乘解: (2)已知多个近似分布于同一直线上的点,想拟合出一个直线方程:设该直线方程为y=kx+b,调整参数k
回归_最小二乘法(python脚本实现)
python机器学习-乳腺癌细胞挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share 机器学习,统计项目联系:QQ:231469242 # -*- coding: utf-8 -*- import numpy as np import
OpenCV2马拉松第25圈——直线拟合与RANSAC算法
计算机视觉讨论群162501053 转载请注明:http://blog.csdn.net/abcd1992719g/article/details/28118095 收入囊中 最小二乘法(least square)拟合 Total least square 拟合 RANSAC拟合 葵花宝典 关于least square拟合,我在http://blog.csdn.net/abcd1992719g/article/details/25424061有介绍,或者看以下 watermark/2/text/
PCL利用RANSAC自行拟合分割平面
利用PCL中分割算法. pcl::SACSegmentation<pcl::PointXYZ> seg; ,不利用法线参数,只根据模型参数得到的分割面片,与想象的面片差距很大, pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients ()); pcl::PointIndices::Ptr inliers (new pcl::PointIndices ()); // 创建分割对象 pcl::SACSegmentat
RANSAC和Flitline
[blog算法原理]RANSAC和FitLine 如果已经有一系列图片,需要拟合出最为合适的一条直线出来,这个时候你会选择RANSAC还是FitLine. 一.算法定义: RANSAC是实际运用非常广泛的算法,它的数学表示为 "Ransac 是解决这类问题的代表性算法.它是一种随机算法,步骤如下: 输入:k,n,t,d,model,dataBestModel = null;迭代k次——(1) 从data中随机取出n个点,用这n个点去拟合model和模型的model,将得到的带参数的model
RANSAC算法详解
给定两个点p1与p2的坐标,确定这两点所构成的直线,要求对于输入的任意点p3,都可以判断它是否在该直线上.初中解析几何知识告诉我们,判断一个点在直线上,只需其与直线上任意两点点斜率都相同即可.实际操作当中,往往会先根据已知的两点算出直线的表达式(点斜式.截距式等等),然后通过向量计算即可方便地判断p3是否在该直线上. 生产实践中的数据往往会有一定的偏差.例如我们知道两个变量X与Y之间呈线性关系,Y=aX+b,我们想确定参数a与b的具体值.通过实验,可以得到一组X与Y的测试值.虽然理论上两个未知数
最小二乘法多项式拟合的Java实现
背景 由项目中需要根据一些已有数据学习出一个y=ax+b的一元二项式,给定了x,y的一些样本数据,通过梯度下降或最小二乘法做多项式拟合得到a.b,解决该问题时,首先想到的是通过spark mllib去学习,可是结果并不理想:少量的文档,参数也很难调整.于是转变了解决问题的方式:采用了最小二乘法做多项式拟合. 最小二乘法多项式拟合描述下: (以下参考:https://blog.csdn.net/funnyrand/article/details/46742561) 假设给定的数据点和其对应的函数值
RANSAC
一.概述 RANSAC(RANdom SAmple Consensus)随机抽样一致,是用来从一组观测数据中估计数学模型参数的一种方法.由于是观测数据,避免不了有误差存在,当误差太大了就变成了无效数据outlier(与outlier对应的是inlier有效数据).如果我们在估计参数的时候没有剔除掉这些无效的数据,结果会被这些无效数据所影响.所以我们希望采用一种方法从数据集的inliers中估计模型参数,这就是RANSAC. 二.算法描述 1. 输入 数据--------------------
Signal Processing and Pattern Recognition in Vision_15_RANSAC:Performance Evaluation of RANSAC Family——2009
此部分是 计算机视觉中的信号处理与模式识别 与其说是讲述,不如说是一些经典文章的罗列以及自己的简单点评.与前一个版本不同的是,这次把所有的文章按类别归了类,并且增加了很多文献.分类的时候并没有按照传统的分类方法,而是划分成了一个个小的门类,比如SIFT,Harris都作为了单独的一类,虽然它们都可以划分到特征提取里面去.这样做的目的是希望能突出这些比较实用且比较流行的方法.为了以后维护的方便,按照字母顺序排的序. 15. RANSAC随机抽样一致性方法,与传统的最小均方误差等完全是两个路子.在S
第三集 欠拟合与过拟合的概念、局部加权回归、logistic回归、感知器算法
课程大纲 欠拟合的概念(非正式):数据中某些非常明显的模式没有成功的被拟合出来.如图所示,更适合这组数据的应该是而不是一条直线. 过拟合的概念(非正式):算法拟合出的结果仅仅反映了所给的特定数据的特质. 非参数学习方法 线性回归是参数学习方法,有固定数目的参数以用来进行数据拟合的学习型算法算法称为参数学习方法.对于非参数学习方法来讲,其参数的数量随着训练样本的数目m线性增长:换句话来说,就是算法所需要的东西会随着训练集合线性增长.局部加权回归算法是非参数学习方法的一个典型代表. 局部加权回归算法
matlab拟合三维椭球
同学问的,查了下资料. %需要拟合的点的坐标为(0,-174.802,990.048),(0.472,-171.284,995.463),(0.413,-168.639,1003.55),(0.064,-167.862,1019.55), %(0,-170.357,1035.44),(0,-172.142,1044.78),(0.215,-174.759,1047.84),(0.171,-176.586,1048.13),(0,-179.832,1043.34),(0,181.5
Dlib Opencv cv2.fitEllipse用于人眼轮廓椭圆拟合
dlib库的安装以及人脸特征点的识别分布分别在前两篇博文里面 Dlib Python 检测人脸特征点 Face Landmark Detection Mac OSX下安装dlib (Python) 这篇主要涉及 cv2.ellipse 和 cv2.fitEllipse 的用法 import cv2 import dlib import numpy as np detector = dlib.get_frontal_face_detector() landmark_predictor = dlib
OpenCV:直线拟合——cv::fitLine()详解
实现目的:有一系列的点,需要拟合出一条直线. cv::fitLine()的具体调用形式如下: void cv::fitLine( cv::InputArray points, // 二维点的数组或vector cv::OutputArray line, // 输出直线,Vec4f (2d)或Vec6f (3d)的vector int distType, // 距离类型 double param, // 距离参数 double reps, // 径向的精度参数 表示直线到原点距离的精度,建议取 0
用Python开始机器学习(3:数据拟合与广义线性回归)
机器学习中的预测问题通常分为2类:回归与分类. 简单的说回归就是预测数值,而分类是给数据打上标签归类. 本文讲述如何用Python进行基本的数据拟合,以及如何对拟合结果的误差进行分析. 本例中使用一个2次函数加上随机的扰动来生成500个点,然后尝试用1.2.100次方的多项式对该数据进行拟合.拟合的目的是使得根据训练数据能够拟合出一个多项式函数,这个函数能够很好的拟合现有数据,并且能对未知的数据进行预测. 代码如下: import matplotlib.pyplot as plt import
基于MATLAB的多项式数据拟合方法研究-毕业论文
摘要:本论文先介绍了多项式数据拟合的相关背景,以及对整个课题做了一个完整的认识.接下来对拟合模型,多项式数学原理进行了详细的讲解,通过对文献的阅读以及自己的知识积累对原理有了一个系统的认识.介绍多项式曲线拟合的基本理论,对多项式数据拟合原理进行了全方面的理论阐述,同时也阐述了曲线拟合的基本原理及多项式曲线拟合模型的建立.具体记录了多项式曲线拟合的具体步骤,在建立理论的基础上具体实现多项式曲线的MATLAB实现方法的研究,采用MATLAB R2016a的平台对测量的数据进行多项式数据拟合,介绍了M
29 基于PCL的点云平面分割拟合算法技术路线(针对有噪声的点云数据)
0 引言 最近项目中用到了基于PCL开发的基于平面的点云和CAD模型的配准算法,点云平面提取采用的算法如下. 1 基于PCL的点云平面分割拟合算法 2 参数及其意义介绍 (1)点云下采样 1. 参数:leafsize 2. 意义:Voxel Grid的leafsize参数,物理意义是下采样网格的大小,直接影响处理后点云密集程度,并对后期各种算法的处理速度产生直接影响. 3. 值越大,点云密度越低,处理速度越快:值越小,点云密度越高,处理速度越慢.通常保持这个值,使得其他的与点数有关的参数可以比较
计算机视觉基本原理——RANSAC
公众号[视觉IMAX]第31篇原创文章 一 前言 对于上一篇文章——一分钟详解「本质矩阵」推导过程中,如何稳健地估计本质矩阵或者基本矩阵呢?正是这篇文章重点介绍的内容. 基本矩阵求解方法主要有: 1)直接线性变换法 a)8点法 b)最小二乘法 2)基于RANSAC的鲁棒方法. 先简单介绍一下直接线性变换法: 注:三个红线标注的三个等式等价. 在上述分析过程中,如果n>=8时,最小二乘法求解是否是最优估计呢? 接下来,我们重点探讨一下这个问题. 二 稳健估计 2.1 稳健的定义 稳健(robust
热门专题
xml获取table的高度
android 半圆
mybatis传递参数类型包括基本类型
魔法树 - 提答 - 点分治
django test 生成报告
复选框是否应该带出之前已选数据
python去重 保留有数字那个
当全局变量与局部变量重名时,那么在调用时
mysql 单引号里执行
win10笔记本 安装ubuntu
vegan 包里面计算adonis
map取出double
Python 会话保持
EasyUI 获取当前电脑的打印机
winform 引用wsdl文件
hack语法搜基础支持
python将ip转换为32位int值
ida android 调试
npm 全局 babel
xss通关 level9