文献中的recall rate(查全率或召回率) and precision(精度)是很重要的概念.可惜很多中文网站讲的我都稀里糊涂,只好用google查了个英文的,草翻如下:召回率和精度定义: 从一个大规模数据集合中检索文档的时,可把文档分成四组 - 系统检索到的相关文档(A) - 系统检索到的不相关文档(B) - 相关但是系统没有检索到的文档(C) - 相关但是被系统检索到的文档(D) 相关 不相关 检索到 A B 未检索到 C D 直观的说,一个好的检索系统检索到的相关文档越多越好,不相关
混淆矩阵 衡量一个分类器性能的更好的办法是混淆矩阵.它基于的思想是:计算类别A被分类为类别B的次数.例如在查看分类器将图片5分类成图片3时,我们会看混淆矩阵的第5行以及第3列. 为了计算一个混淆矩阵,我们首先需要有一组预测值,之后再可以将它们与标注值(label)进行对比.我们也可以在测试集上做预测,但是最好是先不要动测试集(测试集仅需要在最后的阶段使用,在我们有了一个准备上线的分类器后,最后再用测试集测试性能).接下来,我们可以使用cross_val_predict() 方法: from sk