论文分享第四期-2019.04.16 Residual Attention Network for Image Classification,CVPR 2017,RAN 核心:将注意力机制与ResNet结合,用于图像分类.论文设计了一个注意力模块(Attention Module),通过级联该模块(即增加模型深度),网络可以学到细粒度的特征图谱(fined-grained feature maps),因为随着层数的加深,来自不同模块的注意力感知特征可以自适应地改变. 除了注意机制带来的更具判别性