首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
ROC曲线与45°线重合说明什么
2024-09-03
【分类模型评判指标 二】ROC曲线与AUC面积
转自:https://blog.csdn.net/Orange_Spotty_Cat/article/details/80499031 略有改动,仅供个人学习使用 简介 ROC曲线与AUC面积均是用来衡量分类型模型准确度的工具.通俗点说,ROC与AUC是用来回答这样的问题的: 分类模型的预测到底准不准确? 我们建出模型的错误率有多大?正确率有多高? 两个不同的分类模型中,哪个更好用?哪个更准确? 一句话概括版本: ROC是一条线,如果我们选择用ROC曲线评判模型的准确性,那么越靠近左上角的ROC
ROC 曲线/准确率、覆盖率(召回)、命中率、Specificity(负例的覆盖率)
欢迎关注博主主页,学习python视频资源 sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share 统计项目联系QQ:231469242 用条件概率理解混合矩阵容易得多 sensitivity:真阳性
机器学习之分类器性能指标之ROC曲线、AUC值
分类器性能指标之ROC曲线.AUC值 一 roc曲线 1.roc曲线:接收者操作特征(receiveroperating characteristic),roc曲线上每个点反映着对同一信号刺激的感受性. 横轴:负正类率(false postive rate FPR)特异度,划分实例中所有负例占所有负例的比例:(1-Specificity) 纵轴:真正类率(true postive rate TPR)灵敏度,Sensitivity(正类覆盖率) 2针对一个二分类问题,将实例分成正类(postive
ROC曲线,AUC面积
AUC(Area under Curve):Roc曲线下的面积,介于0.1和1之间.Auc作为数值可以直观的评价分类器的好坏,值越大越好. 首先AUC值是一个概率值,当你随机挑选一个正样本以及负样本,当前的分类算法根据计算得到的Score值将这个正样本排在负样本前面的概率就是AUC值,AUC值越大,当前分类算法越有可能将正样本排在负样本前面,从而能够更好地分类. 1. 什么是ROC曲线? ROC曲线是Receiver operating characteristic curve的简称,中文名为“
ROC曲线和AUC值(转)
http://www.cnblogs.com/dlml/p/4403482.html 分类器性能指标之ROC曲线.AUC值 一 roc曲线 1.roc曲线:接收者操作特征(receiveroperating characteristic),roc曲线上每个点反映着对同一信号刺激的感受性. 横轴:负正类率(false postive rate FPR)特异度,划分实例中所有负例占所有负例的比例:(1-Specificity) 纵轴:真正类率(true postive rate TPR)灵敏度,Se
混淆矩阵、准确率、召回率、ROC曲线、AUC
混淆矩阵.准确率.召回率.ROC曲线.AUC 假设有一个用来对猫(cats).狗(dogs).兔子(rabbits)进行分类的系统,混淆矩阵就是为了进一步分析性能而对该算法测试结果做出的总结.假设总共有 27 只动物:8只猫, 6条狗,13只兔子.结果的混淆矩阵如上图所示,我们可以发现,只有主对角线上的预测结果是完全正确的.每一列的和为预测为该类的数量,每一行的和为实际该类的数量.在这个混淆矩阵中,实际有8只猫,但是系统将其中3只预测成了狗:对于6条狗,其中有1条被预测成了兔子,2条被预测成了猫
ROC曲线、PR曲线
在论文的结果分析中,ROC和PR曲线是经常用到的两个有力的展示图. 1.ROC曲线 ROC曲线(receiver operating characteristic)是一种对于灵敏度进行描述的功能图像.ROC曲线可以通过描述真阳性率(TPR)和假阳性率(FPR)来实现.由于是通过比较两个操作特征(TPR和FPR)作为标准,ROC曲线也叫做相关操作特征曲线. ROC分析给选择最好的模型和在上下文或者类分布中抛弃一些较差的模型提供了工具.ROC曲线首先是由二战中的电子工程师和雷达工程师发明的,他们是用
[zz] ROC曲线
wiki https://zh.wikipedia.org/wiki/ROC%E6%9B%B2%E7%BA%BF 在信号检测理论中,接收者操作特征曲线(receiver operating characteristic curve,或者叫ROC曲线)是一种座标图式的分析工具,用于 (1) 选择最佳的信号侦测模型.舍弃次佳的模型. (2) 在同一模型中设定最佳阈值. 在做决策时,ROC分析能不受成本/效益的影响,给出客观中立的建议. ROC曲线首先是由二战中的电子工程师和雷达工程师发明的,用来侦测
ROC曲线与AUC值
本文根据以下文章整理而成,链接: (1)http://blog.csdn.net/ice110956/article/details/20288239 (2)http://blog.csdn.net/chjjunking/article/details/5933105 1.概述 AUC(Area Under roc Curve)是一种用来度量分类模型好坏的一个标准.这样的标准其实有很多,例如:大约10年前在machine learning文献中一统天下的标准:分类精度:在信息检索(IR)领域
ROC曲线和PR曲线
转自:http://www.zhizhihu.com/html/y2012/4076.html分类.检索中的评价指标很多,Precision.Recall.Accuracy.F1.ROC.PR Curve...... 一.历史 wiki上说,ROC曲线最先在二战中分析雷达信号,用来检测敌军.诱因是珍珠港事件:由于比较有用,慢慢用到了心理学.医学中的一些检测等应用,慢慢用到了机器学习.数据挖掘等领域中来了,用来评判分类.检测结果的好坏. 百科:ROC曲线指受试者工作特征曲线(receiver op
ROC曲线的AUC(以及其他评价指标的简介)知识整理
相关评价指标在这片文章里有很好介绍 信息检索(IR)的评价指标介绍 - 准确率.召回率.F1.mAP.ROC.AUC:http://blog.csdn.net/marising/article/details/6543943 ROC曲线:接收者操作特征(receiveroperating characteristic) 比较分类模型的可视工具,曲线上各点反映着对同一信号刺激的感受性. 纵轴:真正率(击中率)true positive rate ,TPR,称为灵敏度.所有实际正例中,正确识别的正例
绘制ROC曲线
什么是ROC曲线 ROC曲线是什么意思,书面表述为: "ROC 曲线(接收者操作特征曲线)是一种显示分类模型在所有分类阈值下的效果的图表." 好吧,这很不直观.其实就是一个二维曲线,横轴是FPR,纵轴是TPR: 至于TPR,FPR怎么计算: 首先要明确,我们是在讨论分类问题中,讨论怎样绘制ROC曲线的,大前提是分类问题.别想太多,就当是二分类问题好了,一类是Positive,一类是Negative 分类模型的预测结果,被阈值化之后,判定为TP,FP,TN,FN四种情况: if Y_pr
ROC曲线-阈值评价标准
ROC曲线指受试者工作特征曲线 / 接收器操作特性曲线(receiver operating characteristic curve), 是反映敏感性和特异性连续变量的综合指标,是用构图法揭示敏感性和特异性的相互关系,它通过将连续变量设定出多个不同的临界值,从而计算出一系列敏感性和特异性,再以敏感性为纵坐标.(1-特异性)为横坐标绘制成曲线,曲线下面积越大,诊断准确性越高.在ROC曲线上,最靠近坐标图左上方的点为敏感性和特异性均较高的临界值. ROC曲线的例子 考虑一个二分问题,即将实例分成正
精确率、召回率、准确率与ROC曲线
精确率表示的是预测为某类样本(例如正样本)中有多少是真正的该类样本,一般用来评价分类任务模型. 比如对于一个分类模型,预测结果为A类的所有样本中包含A0个真正的A样本,和A1个不是A样本的其他类样本,那么该分类模型对于分类A的精确率就是A0/(A0+A1). 通常来说精确率越高,分类效果越好.但是在样本分布非常不均衡的情况下, 精确率高并不一定意味着是一个好的模型. 比如对于预测长沙明天是否会下雪的模型,在极大概率下长沙是不会下雪的,所以随便一个模型预测长沙不会下雪,它的精确率都可以达到99%以
ROC曲线和AUC值
链接:https://www.zhihu.com/question/39840928/answer/146205830来源:知乎 一.混淆矩阵 混淆矩阵如图1分别用”0“和”1“代表负样本和正样本.FP代表实际类标签为”0“,但预测类标签为”1“的样本数量.其余,类似推理. 二.假正率和真正率 假正率(False Positive Rate,FPR)是实际标签为”0“的样本中,被预测错误的比例.真正率(True Positive Rate,TPR)是实际标签为”1“的样本中,被预测正确的比例.其
ROC曲线 Receiver Operating Characteristic
ROC曲线与AUC值 本文根据以下文章整理而成,链接: (1)http://blog.csdn.net/ice110956/article/details/20288239 (2)http://blog.csdn.net/chjjunking/article/details/5933105 1.概述 AUC(Area Under roc Curve)是一种用来度量分类模型好坏的一个标准.这样的标准其实有很多,例如:大约10年前在machine learning文献中一统天下的标准:分类精
评价指标的局限性、ROC曲线、余弦距离、A/B测试、模型评估的方法、超参数调优、过拟合与欠拟合
1.评价指标的局限性 问题1 准确性的局限性 准确率是分类问题中最简单也是最直观的评价指标,但存在明显的缺陷.比如,当负样本占99%时,分类器把所有样本都预测为负样本也可以获得99%的准确率.所以,当不同类别的样本比例非常不均衡时,占比大的类别往往成为影响准确率的最主要因素. 例子:Hulu的奢侈品广告主希望把广告定向投放给奢侈品用户.Hulu通过第三方的数据管理平台拿到了一部分奢侈品用户的数据,并以此为训练集和测试集,训练和测试奢侈品用户的分类模型,该模型的分类准确率超过了95%,但在实际广告
ROC曲线是通过样本点分类概率画出的 例如某一个sample预测为1概率为0.6 预测为0概率0.4这样画出来,此外如果曲线不是特别平滑的话,那么很可能存在过拟合的情况
ROC和AUC介绍以及如何计算AUC from:http://alexkong.net/2013/06/introduction-to-auc-and-roc/ ROC(Receiver Operating Characteristic)曲线和AUC常被用来评价一个二值分类器(binary classifier)的优劣,对两者的简单介绍见这里.这篇博文简单介绍ROC和AUC的特点,以及更为深入地,讨论如何作出ROC曲线图以及计算AUC. ROC曲线 需要提前说明的是,我们这里只讨论二值分类器.对
Mean Average Precision(mAP),Precision,Recall,Accuracy,F1_score,PR曲线、ROC曲线,AUC值,决定系数R^2 的含义与计算
背景 之前在研究Object Detection的时候,只是知道Precision这个指标,但是mAP(mean Average Precision)具体是如何计算的,暂时还不知道.最近做OD的任务迫在眉睫,所以仔细的研究了一下mAP的计算.其实说实话,mAP的计算,本身有很多现成的代码可供调用了,公式也写的很清楚,但是我认为仔细的研究清楚其中的原理更重要. AP这个概念,其实主要是在信息检索领域(information retrieval)中的概念,所以这里会比较快速的过一下这个在信息
ROC曲线 VS PR曲线
python机器学习-乳腺癌细胞挖掘(博主亲自录制视频)https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share https://www.plob.org/article/12476.html(原文链接) 初识ROC曲线 1. ROC的前世今生: ROC的全称是“受试
热门专题
SnapKit 安全区
LAY-UI和echarts
c)随机生成由大小写字母及数字构成的8位密码
java中的内存消息中间件
null和dbnull
背景定位——background-position属性
redis前台启动和后台启动是什么意思
jq 获取当前select的id
shell 上一个命令还没执行成功下一个命令就执行了
aspx.cs文件怎么接收ajax传值
java代码 从非常用地址登录 判断ip
open cv imread函数
opencv编译好的so库
aarido 小数点
微信小程序 可视化视图
hadoop yarn local usercache 作用
Html5 Egret播放音乐
win32如何修改Hint弹窗颜色
ansible-2.6.14离线安装包
selenium 模拟回车