相信大家对欧几里得算法,即辗转相除法不陌生吧. 代码如下: int gcd(int a, int b){ return !b ? gcd(b, a % b) : a; } 而扩展欧几里得算法,顾名思义就是对欧几里得算法的扩展. 切入正题: 首先我们来看一个问题: 求整数x, y使得ax + by = 1, 如果gcd(a, b) != 1, 我们很容易发现原方程是无解的.则方程ax + by = 1有正整数对解(x, y)的必要条件是gcd(a, b) = 1,即a, b 互质. 此时正整数对解
.net中,处于安全的考虑,RSACryptoServiceProvider类,解密时只有同时拥有公钥和私钥才可以.原因是公钥是公开的,会被多人持有.这样的数据传输是不安全的.C#RSA私钥加密,公钥解密出错的原因! C#中用RSA算法生成公钥和私钥 方法一: 公钥密钥生成后,保存在同名文件夹下面,如下图: 公钥密钥生成,所在路径[RSA\RSA\bin\Debug] using System; using System.IO; using System.Security.Cryptograph