8.3 Margin of Error 由该公式可知: To improve the precision of the estimate, we need to decrease the margin of error, E. Because the sample size, n, occurs in the denominator of the formula for E, we can decrease E by increasing the sample size. 可以通过减小Z或增大n
7.3 The Sampling Distribution of the Sample Mean population:1000:Scale are normally distributed with mean 100 and standard deviation 16 sample:4:可以得到样本均值的分布图如下: 与通过公式计算得到的mean 和 标准差一致:μx¯ = μ = 100 and σx¯ = σ/√n = 16/√4 = 8; 由图可知The histogram is sha
7.2 The Mean and Standard Deviation of the Sample Mean Recall that the mean of a variable is denoted μ, subscripted if necessary with the letter representing the variable. So the mean of x is written as μx , the mean of y as μy , and so on. In parti
在做图片处理的时候最常遇到的问题估计就是Out Of Memory (内存溢出)了 网上对这种问题的解决方案很多,原来无非就是压缩图片大小 本不该重复造轮子,但实际中却遇见了问题,写出来希望后来者能引以为戒,并给出一个自我感觉不错的方案 常用的一种解决方案: FileInputStream f = new FileInputStream(file);BitmapFactory.Options options = new BitmapFactory.Options(); options.inS
import numpy import theano.tensor as T from theano import function x = T.dscalar('x') y = T.dscalar('y') z = x + y f = function([x, y], z)numpy.allclose(f(16.3, 12.1), 28.4) 输出为truenumpy.allclose(z.eval({x:16.3, y:12.1}, 28.4)) 输出为true tensor:高维数组,T
· 来源:http://www.dxy.cn/bbs/thread/6492633#6492633 6楼: “据我所知,SD( standard deviation )反应的是观测值的变异性,其表示平均数的代表性,而SEM是 standard error of mean, 是平均数的抽样误差,反应平均数的抽样准确性,由于真实值是不知道的,统计估计值的准确性无法度量,但利用统计学方法可以度量精确性.试验的误差来源有系统误差和抽样误差(随机误差),系统误差易于克服,抽样误差由许多无法控制的内因和外因
题目链接:http://codeforces.com/contest/707/problem/A A. Brain's Photos time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standard output Small, but very brave, mouse Brain was not accepted to summer school of y
Basic Concepts Probability distribution Discrete distribution (离散分布) The distribution of the discrete random variable. Discrete random variable takes on a finite and countable number of possible values. Continuous distribution (连续分布) The distribution
一 theano内置数据类型 只有thenao.shared()类型才有get_value()成员函数(返回numpy.ndarray)? 1. 惯常处理 x = T.matrix('x') # the data is presented as rasterized images y = T.ivector('y') # the labels are presented as 1D vector of [int] labels # reshape matrix of rasterized im