1.doc上的解释(https://spark.apache.org/docs/2.1.0/api/java/org/apache/spark/sql/Column.html) df("columnName") // On a specific DataFrame. col("columnName") // A generic column no yet associated with a DataFrame.
Spark获取DataFrame中列的方式--col,$,column,apply 1.官方说明 2.使用时涉及到的的包 3.Demo 原文作者:大葱拌豆腐 原文地址:Spark获取DataFrame中列的几种姿势–col,$,column,apply 1.官方说明 df("columnName") // On a specific DataFrame. col("columnName") // A generic column no yet associated
pandas提供了set_index方法可以将DataFrame的列(多列)变成行索引,通过reset_index方法可以将层次化索引的级别会被转移到列里面. 1.DataFrame的set_index方法 data = pd.DataFrame(np.arange(,).reshape(,),index=["a","b","c"],columns=["A","B","C"]) prin
新建一个 dataFrame : val conf = new SparkConf().setAppName("TTyb").setMaster("local") val sc = new SparkContext(conf) val spark: SQLContext = new SQLContext(sc) import org.apache.spark.sql.functions.explode import org.apache.spark.sql.func
一.实验文档准备 1.安装 tushare pip install tushare 2.启动ipython C:\Users\Administrator>ipython Python 3.7.0 (default, Jun 28 2018, 08:04:48) [MSC v.1912 64 bit (AMD64)] Type 'copyright', 'credits' or 'license' for more information IPython 7.0.1 -- An enhanced