首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
self.conv1(x)是啥意思
2024-10-30
第二次作业:卷积神经网络 part 1
第二次作业:卷积神经网络 part 1 视频学习 数学基础 受结构限制严重,生成式模型效果往往不如判别式模型. RBM:数学上很漂亮,且有统计物理学支撑,但主流深度学习平台不支持RBM和预训练. 自编码器:正则自编码器.稀疏自编码器.去噪自编码器和变分自编码器. 概率/函数形式统一: 欠拟合.过拟合解决方案: 欠拟合:提高模型复杂度 决策树:拓展分支 神经网络:增加训练轮数 过拟合1:降低模型复杂度 优化目标加正则项 决策树:剪枝 神经网络:early stop.dropout 过拟合2:数据增
caffe出错:Unknown bottom blob 'data' (layer 'conv1', bottom index 0)
原文https://blog.csdn.net/u011070171/article/details/75425740 caffe训练出现如下错误: Unknown bottom blob 'data' (layer 'conv1', bottom index 0) 问题,缺少对应的data. 解决:可能是在训练的时候加入测试迭代数,可是网络文件里并没有测试网络. 检查solver.prototxt里边是否定义了test相关内容,而train.prototxt里边并没有test相关结构.
ValueError: Variable conv1/weights already exists.
跑TensorFlow程序的过程中出现了错误,解决之后再次跑时,报如下错误: ValueError: Variable conv1/weights already exists, 原因: 这是因为我在Spyder的Python控制台里跑的原因,Python的控制台会保存上次运行结束的变量. 解决办法: 在程序的开头加上下边的代码. tf.reset_default_graph()
tensorflow 一维卷积 tf.layers.conv1()使用
在自然语言处理中,主要使用一维的卷积. API tf.layers.conv1d( inputs, filters, kernel_size, strides=1, padding='valid', data_format='channels_last', dilation_rate=1, activation=None, use_bias=True, kernel_initializer=None, bias_initializer=tf.zeros_initializer(), kernel
caffe运行训练脚本时报错:Unknown bottom blob 'data' (layer 'conv1',bottom index 0)
报错的两种报错原因: 1.输入数的路径错误,需要将路径进行修改排查目录是否出错 2.训练原数据格式不对 3.train.prototxt文件中并未设置test层,而在solver层则设置了test的迭代等参数 两种解决方法 1.对错误原因1,则改为正确路径 2.对错误原因2,修改create_data.sh文件将数据改为相应格式(或者修改train.prototxt文件,将参数改为数据源格式) 3.对错误原因3,在train.prototxt文件增加test层,或者将solver.prototx
卷积神经网络(CNN)学习算法之----基于LeNet网络的中文验证码识别
由于公司需要进行了中文验证码的图片识别开发,最近一段时间刚忙完上线,好不容易闲下来就继上篇<基于Windows10 x64+visual Studio2013+Python2.7.12环境下的Caffe配置学习 >文章,记录下利用caffe进行中文验证码图片识别的开发过程.由于这里主要介绍开发和实现过程,CNN理论性的东西这里不作为介绍的重点,遇到相关的概念和术语请自行研究.目前从我们训练出来的模型来看,单字识别率接近96%,所以一个四字验证码的准确率大概80%,效果还不错,完全能满足使用,如
python读取caffemodel文件
caffemodel是二进制的protobuf文件,利用protobuf的python接口可以读取它,解析出需要的内容 不少算法都是用预训练模型在自己数据上微调,即加载"caffemodel"作为网络初始参数取值,然后在此基础上更新.使用方式往往是:同时给定solver的prototxt文件,以及caffemodel权值文件,然后从solver创建网络,并从caffemodel读取网络权值的初值.能否不加载solver的prototxt,只加载caffemodel并看看它里面都有什么东
【转】TensorFlow练习20: 使用深度学习破解字符验证码
验证码是根据随机字符生成一幅图片,然后在图片中加入干扰象素,用户必须手动填入,防止有人利用机器人自动批量注册.灌水.发垃圾广告等等 . 验证码的作用是验证用户是真人还是机器人:设计理念是对人友好,对机器难. 上图是常见的字符验证码,还有一些验证码使用提问的方式. 我们先来看看破解验证码的几种方式: 人力打码(基本上,打码任务都是大型网站的验证码,用于自动化注册等等) 找到能过验证码的漏洞 最后一种是字符识别,这是本帖的关注点 我上网查了查,用Tesseract OCR.OpenCV等等其它方法都
利用Caffe做回归(regression)
Caffe应该是目前深度学习领域应用最广泛的几大框架之一了,尤其是视觉领域.绝大多数用Caffe的人,应该用的都是基于分类的网络,但有的时候也许会有基于回归的视觉应用的需要,查了一下Caffe官网,还真没有很现成的例子.这篇举个简单的小例子说明一下如何用Caffe和卷积神经网络(CNN: Convolutional Neural Networks)做基于回归的应用. 原理 最经典的CNN结构一般都是几个卷积层,后面接全连接(FC: Fully Connected)层,最后接一个Softmax层输
caffe的python接口学习(5):生成deploy文件
如果要把训练好的模型拿来测试新的图片,那必须得要一个deploy.prototxt文件,这个文件实际上和test.prototxt文件差不多,只是头尾不相同而也.deploy文件没有第一层数据输入层,也没有最后的Accuracy层,但最后多了一个Softmax概率层. 这里我们采用代码的方式来自动生成该文件,以mnist为例. deploy.py # -*- coding: utf-8 -*- from caffe import layers as L,params as P,to_proto
caffe的python接口学习(4):mnist实例---手写数字识别
深度学习的第一个实例一般都是mnist,只要这个例子完全弄懂了,其它的就是举一反三的事了.由于篇幅原因,本文不具体介绍配置文件里面每个参数的具体函义,如果想弄明白的,请参看我以前的博文: 数据层及参数 视觉层及参数 solver配置文件及参数 一.数据准备 官网提供的mnist数据并不是图片,但我们以后做的实际项目可能是图片.因此有些人并不知道该怎么办.在此我将mnist数据进行了转化,变成了一张张的图片,我们练习就从图片开始.mnist图片数据我放在了百度云盘. mnist图片数据下载:htt
使用caffe训练自己的CNN
现在有这样的一个场景:给一张行人的小矩形框图片, 根据该行人的特征识别出性别. 分析: (1),行人的姿态各异,变化多端.很难提取图像的特定特征 (2),正常人肉眼判别行人的根据是身材比例,头发长度等.(如果是冬天的情况下,行人穿着厚实,性别识别更加难) solution: 针对难以提取特定特征的图像,可以采用卷积神经网络CNN去自动提取并训练. 数据准备: 采用 PETA数据集,Pedestrain Attribute Recognition At Far Distance. 该数据集一共包
【转】Caffe初试(五)视觉层及参数
本文只讲解视觉层(Vision Layers)的参数,视觉层包括Convolution, Pooling, Local Response Normalization (LRN), im2col等层. 1.Convolution层: 就是卷积层,是卷积神经网络(CNN)的核心层. 层类型:Convolution lr_mult: 学习率的系数,最终的学习率是这个数乘以solver.prototxt配置文件中的base_lr.如果有两个lr_mult, 则第一个表示权值的学习率,第二个表示偏置项的学
Caffe初试(三)使用caffe的cifar10网络模型训练自己的图片数据
由于我涉及一个车牌识别系统的项目,计划使用深度学习库caffe对车牌字符进行识别.刚开始接触caffe,打算先将示例中的每个网络模型都拿出来用用,当然这样暴力的使用是不会有好结果的- -||| ,所以这里只是记录一下示例的网络模型使用的步骤,最终测试的准确率就暂且不论了! 一.图片数据库 来源 我使用的图像是在项目的字符分割模块中分割出来的字符图像,灰度化并归一化至32*64,字符图片样本示例如下: 建立自己的数据文件夹 在./caffe/data/目录下建立自己的数据文件夹mine,并且在mi
从零开始山寨Caffe·肆:线程系统
不精通多线程优化的程序员,不是好程序员,连码农都不是. ——并行计算时代掌握多线程的重要性 线程与操作系统 用户线程与内核线程 广义上线程分为用户线程和内核线程. 前者已经绝迹,它一般只存在于早期不支持多线程的系统中. 它用模拟的方式实现一个模拟的多线程系统,不支持异步. 即,一个线程被阻塞了,其它线程也会被阻塞. 当今的操作系统几乎都默认提供了内核线程API,底层由操作系统实现. 内核线程的好处在于,它们之间支持异步,是"真"多线程. 操作系统的流氓软件 不过,内核线程也给线程的使用
从Bayesian角度浅析Batch Normalization
前置阅读:http://blog.csdn.net/happynear/article/details/44238541——Batch Norm阅读笔记与实现 前置阅读:http://www.zhihu.com/question/38102762——知乎网友 Deep Learning与Bayesian Learning在很多情况下是相通的,随着Deep Learning理论的发展, 我们看到,Deep Learning越来越像Bayesian Learning的一个子集,Deep Learni
caffe中的BatchNorm层
在训练一个小的分类网络时,发现加上BatchNorm层之后的检索效果相对于之前,效果会有提升,因此将该网络结构记录在这里,供以后查阅使用: 添加该层之前: layer { name: "conv1" type: "Convolution" bottom: "data" top: "conv1" param { lr_mult: decay_mult: } param { lr_mult: decay_mult: } convo
论文阅读(Zhuoyao Zhong——【aixiv2016】DeepText A Unified Framework for Text Proposal Generation and Text Detection in Natural Images)
Zhuoyao Zhong--[aixiv2016]DeepText A Unified Framework for Text Proposal Generation and Text Detection in Natural Images 目录 作者和相关链接 方法概括 创新点和贡献 方法细节 实验结果 问题讨论 总结与收获点 参考文献 作者和相关链接 作者 Zhuoyao Zhong, z.zhuoyao@mail.scut.sdu.cnLianwen Jin, lianwen.jin@gm
论文阅读(Weilin Huang——【TIP2016】Text-Attentional Convolutional Neural Network for Scene Text Detection)
Weilin Huang--[TIP2015]Text-Attentional Convolutional Neural Network for Scene Text Detection) 目录 作者和相关链接 方法概括 创新点和贡献 方法细节 实验结果 问题讨论 总结与收获点 作者补充信息 参考文献 作者和相关链接 论文下载 作者: tong he, 黄伟林,乔宇,姚剑 方法概括 使用改进版的MSER(CE-MSERs,contrast-enhancement)提取候选字符区域: 使用新的CN
神经网络模型之AlexNet的一些总结
说明: 这个属于个人的一些理解,有错误的地方,还希望给予教育哈- 此处以caffe官方提供的AlexNet为例. 目录: 1.背景 2.框架介绍 3.步骤详细说明 5.参考文献 背景: AlexNet是在2012年被发表的一个金典之作,并在当年取得了ImageNet最好成绩,也是在那年之后,更多的更深的神经网路被提出,比如优秀的vgg,GoogleLeNet. 其官方提供的数据模型,准确率达到57.1%,top 1-5 达到80.2%. 这项对于传统的机器学习分类算法而言,已经相当的出色. 框架
tensorflow版的bvlc模型
研究相关的图片分类,偶然看到bvlc模型,但是没有tensorflow版本的,所以将caffe版本的改成了tensorflow的: 关于模型这个图: 下面贴出通用模板: from __future__ import print_function import tensorflow as tf import numpy as np from scipy.misc import imread, imresize class BVLG: def __init__(self, imgs, weights
热门专题
webstorm快捷键壁纸
extui combobox 默认选中第一个
mysql in 查询 mybatis xml
freeradius测试
未能将ProteusDebugEngine调试器附加到计算机
qtoolbox item样式
vbscript查询sqlserver
执行带参数的存储过程,正确的方法为
802.11 ap初始化流程
python绘制一个边长为300的等边三角形
C# 获取formdata里的值
@cacheable redis没查到
java随机生成姓名 工具类
python 如何批量执行接口自动化测试用例
python中的from import 原理
delphi out 输入输出
内联样式如何写复合属性
oracle 查看 asm 剩余空间
Java怎么把当前系统时间转化为标准时间
jna获取C#dll所有函数