作者:Tom Hardy Date:2020-04-15 来源:CVPR2020文章汇总 | 点云处理.三维重建.姿态估计.SLAM.3D数据集等(12篇) 1.PVN3D: A Deep Point-wise 3D Keypoints Voting Network for 6DoF PoseEstimation 文章链接:https://arxiv.org/abs/1911.04231 代码链接:https://github.com/ethnhe/PVN3D 在这项工作中,论文提出了一种新的数
CVPR2020:点云弱监督三维语义分割的多路径区域挖掘 Multi-Path Region Mining for Weakly Supervised 3D Semantic Segmentation on Point Clouds 论文地址: https://openaccess.thecvf.com/content_CVPR_2020/papers/Wei_Multi-Path_Region_Mining_for_Weakly_Supervised_3D_Semantic_Segmentat
仅供参考,还未运行程序,理解部分有误,请参考英文原版. 绿色部分非文章内容,是个人理解. 转载请注明:http://blog.csdn.net/raby_gyl/article/details/17471617 Chapter 4:Exploring Structure from Motion Using OpenCV 在这一章,我们将讨论来至运动结构(Structure from Motion,SfM)的概念,或者从一个运动的相机拍摄到的图像中更好的推测提取出来的几何结构,使用OpenCV的
Project Tango 是从Google 的 Advanced Technology and Projects group (ATAP) 孵化出来的一个项目,诚如ATAP高级工程师Johnny Lee 所言,"We're developing the hardware and software technologies to help everything and everyone understand precisely where they are, anywhere." Ta
Abstract Input: A query image Source: A point cloud reconstruction of a large scene (有一百多万3D点) Result:pose 关键:an efficient and effective search method to establish matches between image features and scene points needed for pose estimation. 一个动态搜多额外匹配