首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
SIR模型和sis算法 python代码
2024-10-09
基本的传染病模型:SI、SIS、SIR及其Python代码实现
本文主要参考博客:http://chengjunwang.com/en/2013/08/learn-basic-epidemic-models-with-python/.该博客有一些笔误,并且有些地方表述不准确,推荐大家阅读Albert-Laszlo Barabasi写得书Network Science,大家可以在如下网站直接阅读传染病模型这一章:http://barabasi.com/networksciencebook/chapter/10#contact-networks.Barabasi
手写算法-python代码实现KNN
原理解析 KNN-全称K-Nearest Neighbor,最近邻算法,可以做分类任务,也可以做回归任务,KNN是一种简单的机器学习方法,它没有传统意义上训练和学习过程,实现流程如下: 1.在训练数据集中,找到和需要预测样本最近邻的K个实例: 2.分别统计这K个实例所属的类别,最多的那个类别就是样本预测的类别(多数表决法): 对于回归任务而言,则是求这K个实例输出值的平均值(选择平均法): 因此,该算法的几个重点在于: 1.K值的选取,K值的不同直接会导致最终结果的不同: 选择较小的k值,就相当
k-近邻算法python代码实现(非常全)
1.k近邻算法是学习机器学习算法最为经典和简单的算法,它是机器学习算法入门最好的算法之一,可以非常好并且快速地理解机器学习的算法的框架与应用.它是一种经典简单的分类算法,当然也可以用来解决回归问题.2.kNN机器学习算法具有以下的特点:(1)思想极度简单(2)应用的数学知识非常少(3)解决相关问题的效果非常好(4)可以解释机器学习算法使用过程中的很多细节问题(5)更加完整地刻画机器学习应用的流程3.KNN算法pyhton代码实现如下: (1)解决分类问题的代码如下:#1-1输入任意的自定义数据集
混合高斯模型和EM算法
这篇讨论使用期望最大化算法(Expectation-Maximization)来进行密度估计(density estimation). 与k-means一样,给定的训练样本是,我们将隐含类别标签用表示.与k-means的硬指定不同,我们首先认为是满足一定的概率分布的,这里我们认为满足多项式分布,,其中,有k个值{1,…,k}可以选取.而且我们认为在给定后,满足多值高斯分布,即.由此可以得到联合分布. 整个模型简单描述为对于每个样例,我们先从k个类别中按多项式分布抽取一个,然后根据所对应的k个多值
高斯混合模型和EM算法
使用期望最大化算法(Expectation-Maximization)来进行密度估计(density estimation). 与k-means一样,给定的训练样本是,我们将隐含类别标签用表示.与k-means的硬指定不同,我们首先认为是满足一定的概率分布的,这里我们认为满足多项式分布,,其中,有k个值{1,-,k}可以选取.而且我们认为在给定后,满足多值高斯分布,即.由此可以得到联合分布. 整个模型简单描述为对于每个样例,我们先从k个类别中按多项式分布抽取一个,然后根据所对应的k个多值高斯分布
最大熵模型和EM算法
一.极大似然已经发生的事件是独立重复事件,符合同一分布已经发生的时间是可能性(似然)的事件利用这两个假设,已经发生时间的联合密度值就最大,所以就可以求出总体分布f中参数θ 用极大似然进行机器学习有监督学习:最大熵模型无监督学习:GMM 二.熵和信息自信息i(x) = -log(p(x)) 信息是对不确定性的度量.概率是对确定性的度量,概率越大,越确定,可能性越大.信息越大,越不确定. 熵是对平均不确定性的度量.熵是随机变量不确定性的度量,不确定性越大,熵值越大.H(x) = -∑p(x)log
HMM模型和Viterbi算法
https://www.cnblogs.com/Denise-hzf/p/6612212.html 一.隐含马尔可夫模型(Hidden Markov Model) 1.简介 隐含马尔可夫模型并不是俄罗斯数学家马尔可夫发明的,而是美国数学家鲍姆提出的,隐含马尔可夫模型的训练方法(鲍姆-韦尔奇算法)也是以他名字命名的.隐含马尔可夫模型一直被认为是解决大多数自然语言处理问题最为快速.有效的方法. 2.马尔可夫假设 随机过程中各个状态St的概率分布,只与它的前一个状态St-1有关,即P(St|S1,S2
tf–idf算法解释及其python代码实现(下)
tf–idf算法python代码实现 这是我写的一个tf-idf的简单实现的代码,我们知道tfidf=tf*idf,所以可以分别计算tf和idf值在相乘,首先我们创建一个简单的语料库,作为例子,只有四句话,每句表示一个文档 copus=['我正在学习计算机','它正在吃饭','我的书还在你那儿','今天不上班'] 由于中文需要分词,jieba分词是python里面比较好用的分词工具,所以选用jieba分词,文末是jieba的链接.首先对文档进行分词: import jieba copus=['我
tf–idf算法解释及其python代码
tf–idf算法python代码实现 这是我写的一个tf-idf的简单实现的代码,我们知道tfidf=tf*idf,所以可以分别计算tf和idf值在相乘,首先我们创建一个简单的语料库,作为例子,只有四句话,每句表示一个文档 copus=['我正在学习计算机','它正在吃饭','我的书还在你那儿','今天不上班'] 由于中文需要分词,jieba分词是python里面比较好用的分词工具,所以选用jieba分词,文末是jieba的链接.首先对文档进行分词: import jieba copus=['我
KNN算法原理(python代码实现)
kNN(k-nearest neighbor algorithm)算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性.简单地说,K-近邻算法采用测量不同特征值之间的距离方法进行分类. - 优点:精度高.对异常值不敏感.无数据输入假定. - 缺点:计算复杂度高.空间复杂度高. - 适用数据范围:数值型和标称型. 举个简单的例子,一群男生和一群女生,我们知道他们的身高和性别. 如下表格: 身高 性别 165 女 16
Logistic回归模型和Python实现
回归分析是研究变量之间定量关系的一种统计学方法,具有广泛的应用. Logistic回归模型 线性回归 先从线性回归模型开始,线性回归是最基本的回归模型,它使用线性函数描述两个变量之间的关系,将连续或离散的自变量映射到连续的实数域. 模型数学形式: 引入损失函数(loss function,也称为错误函数)描述模型拟合程度: 使J(w)最小,求解优化问题得到最佳参数. Logistic回归 logistic回归(Logistic regression 或 logit regression)有时也被
Python实现各种排序算法的代码示例总结
Python实现各种排序算法的代码示例总结 作者:Donald Knuth 字体:[增加 减小] 类型:转载 时间:2015-12-11我要评论 这篇文章主要介绍了Python实现各种排序算法的代码示例总结,其实Python是非常好的算法入门学习时的配套高级语言,需要的朋友可以参考下 在Python实践中,我们往往遇到排序问题,比如在对搜索结果打分的排序(没有排序就没有Google等搜索引擎的存在),当然,这样的例子数不胜数.<数据结构>也会花大量篇幅讲解排序.之前一段时间,由于需要,我复习了
数据关联分析 association analysis (Aprior算法,python代码)
1基本概念 购物篮事务(market basket transaction),如下表,表中每一行对应一个事务,包含唯一标识TID,和购买的商品集合.本文介绍一种成为关联分析(association analysis)的方法,这种方法,可以从下表可以提取出,{尿布}->牛奶. 两个关键问题:1大型数据计算量很大.2发现的某种模式可能是虚假,偶然发生的. 2问题定义 把数据可以转换为如下表的二元表示,非二元不在本文讨论范围 项集 项集的支持度计数: 关联规则: 我们要发现,满足最小支持度与最小置信度
隐马尔科夫模型,第三种问题解法,维比特算法(biterbi) algorithm python代码
上篇介绍了隐马尔科夫模型 本文给出关于问题3解决方法,并给出一个例子的python代码 回顾上文,问题3是什么, 下面给出,维比特算法(biterbi) algorithm 下面通过一个具体例子,来说明维比特算法(biterbi) 下面附上该解决该例题的python代码 import numpy as np #you must install the numpy A=np.array([[0.5,0.2,0.3],[0.3,0.5,0.2],[0.2,0.3,0.5]]) B=np.array(
tf–idf算法解释及其python代码实现(上)
tf–idf算法解释 tf–idf, 是term frequency–inverse document frequency的缩写,它通常用来衡量一个词对在一个语料库中对它所在的文档有多重要,常用在信息检索和文本挖掘中. 一个很自然的想法是在一篇文档中词频越高的词对这篇文档越重要,但同时如果这个词又在非常多的文档中出现的话可能就是很普通的词,没有多少信息,对所在文档贡献不大,例如‘的’这种停用词.所以要综合一个词在所在文档出现次数以及有多少篇文档包含这个词,如果一个词在所在文档出现次数很多同时整个
神经网络BP算法C和python代码
上面只显示代码. 详BP原理和神经网络的相关知识,请参阅:神经网络和反向传播算法推导 首先是前向传播的计算: 输入: 首先为正整数 n.m.p.t,分别代表特征个数.训练样本个数.隐藏层神经元个数.输出 层神经元个数. 当中(1<n<=100,1<m<=1000, 1<p<=100, 1<t<=10). 随后为 m 行,每行有 n+1 个整数.每行代表一个样本中的 n 个特征值 (x 1 , x 2 ,..., x n ) 与样本的 实际观測结果 y.特征值
15行python代码,帮你理解令牌桶算法
本文转载自: http://www.tuicool.com/articles/aEBNRnU 在网络中传输数据时,为了防止网络拥塞,需限制流出网络的流量,使流量以比较均匀的速度向外发送,令牌桶算法就实现了这个功能, 可控制发送到网络上数据的数目,并允许突发数据的发送. 什么是令牌 从名字上看令牌桶,大概就是一个装有令牌的桶吧,那么什么是令牌呢? 紫薇格格拿的令箭,可以发号施令,令行禁止.在计算机的世界中,令牌也有令行禁止的意思,有令牌,则相当于得到了进行操作的授权,没有令牌,就什么都不能做.
FP-growth算法高效发现频繁项集(Python代码)
FP-growth算法高效发现频繁项集(Python代码) http://blog.csdn.net/leo_xu06/article/details/51332428
python代码实现dijkstra算法
求解从1到6的最短路径. python代码实现:(以A-F代表1-6) # Dijkstra算法需要三张散列表和一个存储列表用于记录处理过的节点,如下: processed = [] def build_graph(): """建立图关系的散列表""" graph = {} graph["A"] = {} graph["A"]["B"] = 1 graph["A"][
K-means聚类算法及python代码实现
K-means聚类算法(事先数据并没有类别之分!所有的数据都是一样的) 1.概述 K-means算法是集简单和经典于一身的基于距离的聚类算法 采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大. 该算法认为类簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标. 2.核心思想 通过迭代寻找k个类簇的一种划分方案,使得用这k个类簇的均值来代表相应各类样本时所得的总体误差最小. k个聚类具有以下特点:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开. k-means算
热门专题
C#FromBody 接受不到参数
组件里面style封装的样式怎么改
nodejs expresss 静态资源无法解析显示
苹果recoveryHD制作
krpano 序列号
swift 无数据 视图
thinkpad x220连不上wifi的解决方案
openshift 使用yml创建pod
linux 命令后台运行并记录日志
vue鼠标移动到超级链接的时候改变颜色
gateway jar包怎么单独启动
eclipse怎么设置日语
c语言查找与目标最近的数的索引
marlin打印有波纹
11试图加载格式不正确的程序
ESLint怎么定义函数
bash awk print结果作为xargs
vue 修改document.title无效
html 获取当前host
springboot实现csv文件下载中文乱码