Sklearn 标准化数据 from __future__ import print_function from sklearn import preprocessing import numpy as np from sklearn.model_selection import train_test_split from sklearn.datasets.samples_generator import make_classification from sklearn.svm import S
RESCALING attribute data to values to scale the range in [0, 1] or [−1, 1] is useful for the optimization algorithms, such as gradient descent, that are used within machine learning algorithms that weight inputs (e.g. regression and neural networks).
sklearn中的SVM以及使用多项式特征以及核函数 sklearn中的SVM的使用 SVM的理论部分 需要注意的是,使用SVM算法,和KNN算法一样,都是需要做数据标准化的处理才可以,因为不同尺度的数据在其中的话,会严重影响SVM的最终结果 (在notebook中) 加载好需要的包,使用鸢尾花数据集,为了方便可视化,只取前两个特征,然后将其绘制出来 import numpy as np import matplotlib.pyplot as plt from sklearn import da
一:sklearn中决策树的参数: 1,criterion: ”gini” or “entropy”(default=”gini”)是计算属性的gini(基尼不纯度)还是entropy(信息增益),来选择最合适的节点. 2,splitter: ”best” or “random”(default=”best”)随机选择属性还是选择不纯度最大的属性,建议用默认. 3,max_features: 选择最适属性时划分的特征不能超过此值. 当为整数时,即最大特征数:当为小数时,训练集特征数*小数: if