Linear Model Selection and Regularization 此博文是 An Introduction to Statistical Learning with Applications in R 的系列读书笔记,作为本人的一份学习总结,也希望和朋友们进行交流学习. 该书是The Elements of Statistical Learning 的R语言简明版,包含了对算法的简明介绍以及其R实现,最让我感兴趣的是算法的R语言实现. [转载时请注明来源]:http://www
Explaining Titanic hypothesis with decision trees decision trees are very simple yet powerful supervised learning methods, which constructs a decision tree model, which will be used to make predictions. The main advantage of this model is that a huma
Text classifcation with Naïve Bayes In this section we will try to classify newsgroup messages using a dataset that can be retrieved from within scikit-learn. This dataset consists of around 19,000 newsgroup messages from 20 different topics ranging
Image recognition with Support Vector Machines #our dataset is provided within scikit-learn #let's start by importing and printing its description import sklearn as sk import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import fe
Shuffle arrays or sparse matrices in a consistent way This is a convenience alias to resample(*arrays, replace=False) to do random permutations of the collections. Parameters: *arrays : sequence of indexable data-structures Indexable data-structures