1 K均值聚类 K均值聚类是一种非监督机器学习算法,只需要输入样本的特征 ,而无需标记. K均值聚类首先需要随机初始化K个聚类中心,然后遍历每一个样本,将样本归类到最近的一个聚类中,一个聚类中样本特征值的均值作为这个聚类新的聚类中心,聚类中心的改变,又会改变样本的类别,如此循环往复,直至每一个样本的类别稳定后,也就是聚类中心不再改变是,完成. 我还是以我们熟悉地鸢尾花数据集来举例子 2 对样本进行聚类 sklearn对于所有的机器学习算法有一个一致的接口,一般需要以下几个步骤来进行学习 初始化分