Having said that, you can query sklearn.preprocessing.StandardScaler for the fit parameters: scale_ : ndarray, shape (n_features,) Per feature relative scaling of the data. New in version 0.17: scale_ is recommended instead of deprecated std_. mean_
Recently, I was writing module of feature engineering, i found two excellently packages -- tsfresh and sklearn. tsfresh has been specialized for data of time series, tsfresh mainly include two modules, feature extract, and feature select: from tsfres
查阅了很多资料,逐渐知道了one hot 的编码,但是始终没理解sklearn. preprocessing.OneHotEncoder()如何进行fit()的?自己琢磨了一下,后来终于明白是怎么回事了. 先看one hot 的编码的理解:引用至:https://blog.csdn.net/wy250229163/article/details/52983760 网上关于One-hot编码的例子都来自于同一个例子,而且结果来的太抖了.查了半天,终于给搞清楚这个独热编码是怎么回事了,其实挺简单的,