对书法的热爱,和编译器打数学公式很艰难,就这样的正例自己学过的东西,明天更新gbdt在分类方面的应用. 结论,如果要用一个常量来预测y,用log(sum(y)/sum(1-y))是一个最佳的选择. 本人理解:多分类变成多个二分类,比如说当前类别A,训练集的标签为属于A的为1,其他为0,该值为连续值(概率),基于这所有的样本生成一棵树:结果为对类别A的预测值f(x):然后B标签,C标签同理可得:然后通过softmax层处理下得到属于各个类别的概率值:这里每一轮迭代都会和类别数目相同的树:每一棵树针