1.seaborn设置整体风格 seaborn提供5中主题风格: darkgrid whitegrid dark white ticks 主要通过set()和set_style()两个函数对整体风格进行控制. 准备工作: import seaborn as sns import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt # 定义一个绘图函数 def sinplot(flip=1): x = np.li
Bayesian optimisation for smart hyperparameter search Fitting a single classifier does not take long, fitting hundreds takes a while. To find the best hyperparameters you need to fit a lot of classifiers. What to do? This post explores the inner work
1.查看数据的类型概况 cols = [c for c in train.columns] #返回数据的列名到列表里 print('Number of features: {}'.format(len(cols))) print('Feature types:')train[cols].dtypes.value_counts() 结果如下: Number of features: 376 Feature types: Out[5]: int64 368 o
https://yq.aliyun.com/articles/293596 https://www.kaggle.com/c/outbrain-click-prediction https://www.kaggle.com/anokas/outbrain-eda 用户个性化点击率预估 基本场景: document_id(document) uuid(user) ad_id(a set of ads) 原始数据: page_views.csv: the log of users visiting