首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
softmax激活函数,分类概率
2024-08-27
神经网络中的Softmax激活函数
Softmax回归模型是logistic回归模型在多分类问题上的推广,适用于多分类问题中,且类别之间互斥的场合. Softmax将多个神经元的输出,映射到(0,1)区间内,可以看成是当前输出是属于各个分类的概率,从而来进行多分类. 假设有一个数组V,Vi表示V中的第i个元素,那么Vi元素的softmax值就是: 例如 V = [9,6,3,1] , 经过Softmax函数输出 V_Softmax = [0.950027342724 0.0472990762635 0.00235488234367
大白话5分钟带你走进人工智能-第二十节逻辑回归和Softmax多分类问题(5)
大白话5分钟带你走进人工智能-第二十节逻辑回归和Softmax多分类问题(5) 上一节中,我们讲解了逻辑回归的优化,本节的话我们讲解逻辑回归做多分类问题以及传统的多分类问题,我们用什么手段解决. 先看一个场景,假如我们现在的数据集有3个类别,我们想通过逻辑回归建模给它区分出来.但我们知道逻辑回归本质上是区分二分类的算法模型.难道没有解决办法了吗?办法还是有的,既然想分出3类,我们姑且称这3个类
[ DLPytorch ] 线性回归&Softmax与分类模型&多层感知机
线性回归 基础知识 实现过程 学习笔记 批量读取 torch_data = Data.TensorDataset(features, labels) dataset = Data.DataLoader(torch_data, batch_size, shuffle=True) 定义模型的两种常见写法 这两种方法是我比较喜欢的方法. 其中有两点需要注意: 虽说他们在定义时,输入和输出的神经元个数是一样的,但print(net)结果是不同的,法二有Sequential外层. 由于第一点的原因,这也导
softmax和分类模型
softmax和分类模型 内容包含: softmax回归的基本概念 如何获取Fashion-MNIST数据集和读取数据 softmax回归模型的从零开始实现,实现一个对Fashion-MNIST训练集中的图像数据进行分类的模型 使用pytorch重新实现softmax回归模型 softmax的基本概念 分类问题 一个简单的图像分类问题,输入图像的高和宽均为2像素,色彩为灰度. 图像中的4像素分别记为\(x_1, x_2, x_3, x_4\). 假设真实标签为狗.猫或者鸡,这些标签对应的离散值为
L2 Softmax与分类模型
softmax和分类模型 内容包含: softmax回归的基本概念 如何获取Fashion-MNIST数据集和读取数据 softmax回归模型的从零开始实现,实现一个对Fashion-MNIST训练集中的图像数据进行分类的模型 使用pytorch重新实现softmax回归模型 **本小节用到的数据下载 1.涉及语句 import d2lzh1981 as d2l 数据1 : d2lzh1981 链接:https://pan.baidu.com/s/1LyaZ84Q4M75GLOO-ZPvPoA
『科学计算』通过代码理解SoftMax多分类
SoftMax实际上是Logistic的推广,当分类数为2的时候会退化为Logistic分类 其计算公式和损失函数如下, 梯度如下, 1{条件} 表示True为1,False为0,在下图中亦即对于每个样本只有正确的分类才取1,对于损失函数实际上只有m个表达式(m个样本每个有一个正确的分类)相加, 对于梯度实际上是把我们以前的最后一层和分类层合并了: 第一步则和之前的求法类似,1-概率 & 0-概率组成向量,作为分类层的梯度,对batch数据实现的话就是建立一个(m,k)的01矩阵,直接点乘控制开
sigmoid与softmax 二分类、多分类的使用
二分类下,sigmoid.softmax两者的数学公式是等价的,理论上应该是一样的,但实际使用的时候还是sigmoid好 https://www.zhihu.com/question/295247085 为什么好?其实现在我得到一个确切的答案! 多个sigmoid与一个softmax都可以进行多分类 如果多个类别之间是互斥的,就应该使用softmax,即这个东西只可能是几个类别中的一种. 如果多个类别之间不是互斥的,使用多个sigmoid.比如4个类别人声音乐.舞曲.影视原声.流行歌曲,一首歌曲
ROC曲线是通过样本点分类概率画出的 例如某一个sample预测为1概率为0.6 预测为0概率0.4这样画出来,此外如果曲线不是特别平滑的话,那么很可能存在过拟合的情况
ROC和AUC介绍以及如何计算AUC from:http://alexkong.net/2013/06/introduction-to-auc-and-roc/ ROC(Receiver Operating Characteristic)曲线和AUC常被用来评价一个二值分类器(binary classifier)的优劣,对两者的简单介绍见这里.这篇博文简单介绍ROC和AUC的特点,以及更为深入地,讨论如何作出ROC曲线图以及计算AUC. ROC曲线 需要提前说明的是,我们这里只讨论二值分类器.对
动手学习pytorch——(2)softmax和分类模型
内容太多,捡重要的讲. 在分类问题中,通常用离散的数值表示类别,这里存在两个问题.1.输出值的范围不确定,很难判断值的意义.2.真实标签是离散值,这些离散值与不确定的范围的输出值之间的误差难以衡量. softmax运算符解决了这两个问题.它把输出值变成了值为正且和为1的概率分布. 对于一个分类问题,假设有a个特征,b个样本,c个输出,单层的全连接网络,那么有a*b个w(权重),c个b(偏差). 为了提升计算效率,常对小批量数据做矢量计算.softmax回归的矢量计算表达式如下. 计算loss用交
Softmax多分类算法
List<double[]> inputs_x = new List<double[]>(); inputs_x.Add(new double[] { 0.2, 0.3 }); inputs_x.Add(new double[] { 0.2, 0.1 }); inputs_x.Add(, }); inputs_x.Add(, }); inputs_x.Add(, }); inputs_x.Add(, }); inputs_x.Add(, }); inputs_x.Add(, });
SVM 输出分类概率(python)
import numpy as np from sklearn import svm X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) y = np.array([1, 1, 2, 2]) clt = svm.SVC(probability = True) clt.fit(X, y) print clt.predict([[-0.8, -1]]) print clt.predict_proba([[-0.8, -1]])
Alink漫谈(十六) :Word2Vec源码分析 之 建立霍夫曼树
Alink漫谈(十六) :Word2Vec源码分析 之 建立霍夫曼树 目录 Alink漫谈(十六) :Word2Vec源码分析 之 建立霍夫曼树 0x00 摘要 0x01 背景概念 1.1 词向量基础 1.1.1 独热编码 1.1.2 分布式表示 1.2 CBOW & Skip-Gram 1.2.1 CBOW 1.2.2 Skip-gram 1.3 Word2vec 1.3.1 Word2vec基本思想 1.3.2 Hierarchical Softmax基本思路 1.3.3 Hierarchi
论文解读(DAGNN)《Towards Deeper Graph Neural Networks》
论文信息 论文标题:Towards Deeper Graph Neural Networks论文作者:Meng Liu, Hongyang Gao, Shuiwang Ji论文来源:2020, KDD论文地址:download 论文代码:download 1 Introduction 问题引入: 图卷积是领域聚合的代表,这些邻域聚合方法中的一层只考虑近邻,当进一步深入以实现更大的接受域时,性能会下降,这种性能恶化归因于过平滑问题( over-smoothing),即当感受域增大时,在传播和更新过
word2vec原理(一) CBOW与Skip-Gram模型基础
word2vec原理(一) CBOW与Skip-Gram模型基础 word2vec原理(二) 基于Hierarchical Softmax的模型 word2vec原理(三) 基于Negative Sampling的模型 word2vec是google在2013年推出的一个NLP工具,它的特点是将所有的词向量化,这样词与词之间就可以定量的去度量他们之间的关系,挖掘词之间的联系.虽然源码是开源的,但是谷歌的代码库国内无法访问,因此本文的讲解word2vec原理以Github上的word2vec代码为
用keras做SQL注入攻击的判断
本文是通过深度学习框架keras来做SQL注入特征识别, 不过虽然用了keras,但是大部分还是普通的神经网络,只是外加了一些规则化.dropout层(随着深度学习出现的层). 基本思路就是喂入一堆数据(INT型).通过神经网络计算(正向.反向).SOFTMAX多分类概率计算得出各个类的概率,注意:这里只要2个类别:0-正常的文本:1-包含SQL注入的文本 文件分割上,做成了4个python文件: util类,用来将char转换成int(NN要的都是数字类型的,其他任何类型都要转换成int/fl
word2vec原理(一) CBOW与Skip-Gram模型基础——转载自刘建平Pinard
转载来源:http://www.cnblogs.com/pinard/p/7160330.html word2vec是google在2013年推出的一个NLP工具,它的特点是将所有的词向量化,这样词与词之间就可以定量的去度量他们之间的关系,挖掘词之间的联系.虽然源码是开源的,但是谷歌的代码库国内无法访问,因此本文的讲解word2vec原理以Github上的word2vec代码为准.本文关注于word2vec的基础知识. 1. 词向量基础 用词向量来表示词并不是word2vec的首创,在很久之前就
word2vec的原理(一)
最近上了公司的新员工基础培训课,又对NLP重新产生的兴趣.NLP的第一步大家知道的就是不停的写正则,那个以前学的还可以就不看了.接着就是我们在把NLP的词料在传入神经网络之前的一个预处理,最经典的就是2013年google提出的那个word2vec算法,所以最近想再把这个算法给好好学习一下,然后实现一下. 1. 词向量基础 用词向量来表示词并不是word2vec的首创,在很久之前就出现了.最早的词向量是很冗长的,它使用是词向量维度大小为整个词汇表的大小,对于每个具体的词汇表中的词,将对应的位置置
word2vec原理(一) CBOW+Skip-Gram模型基础
word2vec是google在2013年推出的一个NLP工具,它的特点是将所有的词向量化,这样词与词之间就可以定量的去度量他们之间的关系,挖掘词之间的联系.本文的讲解word2vec原理以Github上的word2vec代码为准.本文关注于word2vec的基础知识. 1. 词向量基础 用词向量来表示词并不是word2vec的首创,在很久之前就出现了.最早的词向量是很冗长的,它使用是词向量维度大小为整个词汇表的大小,对于每个具体的词汇表中的词,将对应的位置置为1.比如我们有下面的5个词组成的词
word2vec原理CBOW与Skip-Gram模型基础
转自http://www.cnblogs.com/pinard/p/7160330.html刘建平Pinard word2vec是google在2013年推出的一个NLP工具,它的特点是将所有的词向量化,这样词与词之间就可以定量的去度量他们之间的关系,挖掘词之间的联系.虽然源码是开源的,但是谷歌的代码库国内无法访问,因此本文的讲解word2vec原理以Github上的word2vec代码为准.本文关注于word2vec的基础知识. 1. 词向量基础 用词向量来表示词并不是word2vec的首创,
词袋模型(BOW,bag of words)和词向量模型(Word Embedding)概念介绍
例句: Jane wants to go to Shenzhen. Bob wants to go to Shanghai. 一.词袋模型 将所有词语装进一个袋子里,不考虑其词法和语序的问题,即每个词语都是独立的.例如上面2个例句,就可以构成一个词袋,袋子里包括Jane.wants.to.go.Shenzhen.Bob.Shanghai.假设建立一个数组(或词典)用于映射匹配 [Jane, wants, to, go, Shenzhen, Bob, Shanghai] 那么上面两个例句就可以用
热门专题
python 如何遍历二维数组
python做z-scroe数据标准化 讲解
webstorm不能输入中文
亚马逊云 ubuntu tinyproxy
oracle表窗口对象不见了
iOS 后台有构建版本,但是提交时无build
nodejs连接数据库的代码和增删改查代码放在一个文件夹下吗
将efi系统分区格式化为fat32,然后重新启动安装
JS 正则表达式截取多个子串
centos设置静态路由,使其之间能够相互ping通
高德纳箭头的运算方法
【BZOJ4636】蒟蒻的数
C语言socket连接mysql
linuxv如何注销tty
create_time 验证器
c#取出config里 <setting>元素值
vue html2canvas oss图片无法显示
火狐剪藏插件如何登陆印象笔记中国帐户
tp框架db类和模型类区别
如何设置vpn服务器地址