作者:周志湖 以下的代码演示了通过Case Class进行表Schema定义的样例: // sc is an existing SparkContext. val sqlContext = new org.apache.spark.sql.SQLContext(sc) // this is used to implicitly convert an RDD to a DataFrame. import sqlContext.implicits._ // Define the schema usi
spark将在1.6中替换掉akka,而采用netty实现整个集群的rpc的框架,netty的内存管理和NIO支持将有效的提高spark集群的网络传输能力,为了看懂这块代码,在网上找了两本书看<netty in action>和<netty权威指南>,结合了spark的源码既学习了netty也看完了spark netty的部分源码.该部分源码掺杂了太多netty的东西,看起来还是有点累的. 下面是我画的UML类图.https://onedrive.live.com/redir?re
package com.wanji.scala.test import javax.swing.text.AbstractDocument.Content import scala.actors.Actor case class Hello(name:String,content:String,send:Actor) case class HelloBack(name:String,content: String,sender:Actor) /** * 描述:Scala编程实战 * 作者: su
即日起开始spark源码阅读之旅,这个过程是相当痛苦的,也许有大量的看不懂,但是每天一个方法,一点点看,相信总归会有极大地提高的.那么下面开始: 创建sparkConf对象,那么究竟它干了什么了类,从代码层面,我们可以看到我们需要setMaster啊,setAppName啊,set blabla啊...等等~ val sparkConf = new SparkConf().setMaster("local").setAppName("TopActiveLocations&qu