/** * Read a text file from HDFS, a local file system (available on all nodes), or any * Hadoop-supported file system URI, and return it as an RDD of Strings. */ def textFile( path: String, minPartitions: Int = defaultMinPartitions): RDD[String] = wi
#_*_coding:utf-8_*_ # spark读取csv文件 #指定schema: schema = StructType([ # true代表不为null StructField("column_1", StringType(), True), # nullable=True, this field can not be null StructField("column_2", StringType(), True), StructField("
wjgl.aspx.cs: using System; using System.Collections; using System.Configuration; using System.Data; using System.Linq; using System.Web; using System.Web.Security; using System.Web.UI; using System.Web.UI.HtmlControls; using System.Web.UI.WebControl
sparkR读取csv文件 The general method for creating SparkDataFrames from data sources is read.df. This method takes in the path for the file to load and the type of data source, and the currently active SparkSession will be used automatically. SparkR suppo
import org.apache.spark.SparkConfimport org.apache.spark.SparkContextimport org.apache.spark.sql.SQLContext object startScala { def main(args: Array[String]): Unit ={ val conf = new SparkConf() .setAppName("QJZK") .setMaster("local") v