Hive去重统计 先说核心: 都会在map阶段count,但reduce阶段,distinct只有一个, group by 可以有多个进行并行聚合,所以group by会快. 经常在公司还能看到.很多老人用distinct去重,很容易数据量大的时候的数据倾斜.感谢上次冲哥的指正. 相信使用Hive的人平时会经常用到去重统计之类的吧,但是好像平时很少关注这个去重的性能问题,但是当一个表的数据量非常大的时候,会发现一个简单的count(distinct order_no)这种语句跑的特别慢,和直接运
spark集群中的节点可以只处理自身独立数据库里的数据,然后汇总吗? 修改 我将spark搭建在两台机器上,其中一台既是master又是slave,另一台是slave,两台机器上均装有独立的mongodb数据库.我是否可以让它们只统计自身数据库的内容,然后将结果汇总到一台服务器上的数据库里?目前我的代码如下,但是最终只统计了master里的数据,另一个worker没有统计上. val config = new Configuration() //以下代码表示只统计本机数据库上的数据,猜测问题可能
一.创建DataFrame和Dataset 1.1 创建DataFrame Spark中所有功能的入口点是SparkSession,可以使用SparkSession.builder()创建.创建后应用程序就可以从现有RDD,Hive表或Spark数据源创建DataFrame.示例如下: val spark = SparkSession.builder().appName("Spark-SQL").master("local[2]").getOrCreate() va
在数据库中,常常会有Distinct Count的操作,比如,查看每一选修课程的人数: select course, count(distinct sid) from stu_table group by course; Hive 在大数据场景下,报表很重要一项是UV(Unique Visitor)统计,即某时间段内用户人数.例如,查看一周内app的用户分布情况,Hive中写HiveQL实现: select app, count(distinct uid) as uv from log_tabl