首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
spark groupbykey 实例
2024-10-27
spark 例子groupByKey分组计算
spark 例子groupByKey分组计算 例子描述: [分组.计算] 主要为两部分,将同类的数据分组归纳到一起,并将分组后的数据进行简单数学计算. 难点在于怎么去理解groupBy和groupByKey 原始数据 2010-05-04 12:50,10,10,10 2010-05-05 13:50,20,20,20 2010-05-06 14:50,30,30,30 2010-05-05 13:50,20,20,20 2010-05-06 14:50,30,30,30 2010-05-04
【原创 Hadoop&Spark 动手实践 6】Spark 编程实例与案例演示
[原创 Hadoop&Spark 动手实践 6]Spark 编程实例与案例演示 Spark 编程实例和简易电影分析系统的编写 目标: 1. 掌握理论:了解Spark编程的理论基础 2. 搭建开发环境:自己可以搭建Spark程序开发的环境 3. 动手实践简单的示例:完成一些简单的动手实验,可以帮助Spark的深入理解 4. 完成一个完整的小项目:完成简易电影分析系统的编写 1. 掌握理论:了解Spark编程的理论基础
Spark Streaming实例
Spark Streaming实例分析 2015-02-02 21:00 4343人阅读 评论(0) 收藏 举报 分类: spark(11) 转载地址:http://www.aboutyun.com/thread-8901-1-1.html 这一章要讲Spark Streaming,讲之前首先回顾下它的用法,具体用法请参照<Spark Streaming编程讲解 >. Example代码分析 val ssc = new StreamingContext(sparkConf, Seconds
Spark Job-Stage-Task实例理解
Spark Job-Stage-Task实例理解 基于一个word count的简单例子理解Job.Stage.Task的关系,以及各自产生的方式和对并行.分区等的联系: 相关概念 Job:Job是由Action触发的,因此一个Job包含一个Action和N个Transform操作: Stage:Stage是由于shuffle操作而进行划分的Task集合,Stage的划分是根据其宽窄依赖关系: Task:最小执行单元,因为每个Task只是负责一个分区的数据 处理,因此一般有多少个分区就有多少个T
Spark使用实例
1.介绍 Spark是基于Hadoop的大数据处理框架,相比较MapReduce,Spark对数据的处理是在本地内存中进行,中间数据不需要落地,因此速度有很大的提升.而MapReduce在map阶段和Reduce阶段后都需要文件落地,对于连续的数据处理,就需要写多个MapReduce Job接力执行. 最近分析用户查询日志提取共现查询,流程如下:a.先获得<uid, query>对:b.合并同一个uid的queries,组成共现query对<query1, query2>, <
5个Spark应用实例
Spark简介: Spark是UC Berkeley AMP lab开发的一个集群计算的框架,类似于Hadoop,但有很多的区别.最大的优化是让计算任务的中间结果可以存储在内存中,不需要每次都写入HDFS,更适用于需要迭代的MapReduce算法场景中,可以获得更好的性能提升. 例如一次排序测试中,对100TB数据进行排序,Spark比Hadoop快三倍,并且只需要十分之一的机器.Spark集群目前最大的可以达到8000节点,处理的数据达到PB级别,在互联网企业中应用非常广泛. 这里整理5个Sp
Spark记录-实例和运行在Yarn
#运行实例 #./bin/run-example SparkPi 10 #./bin/spark-shell --master local[2] #./bin/pyspark --master local[2] #./bin/spark-submit examples/src/main/python/pi.py 10 #./bin/sparkR --master local[2] #./bin/spark-submit examples/src/main/r/dataframe.R #./b
Spark源码系列(八)Spark Streaming实例分析
这一章要讲Spark Streaming,讲之前首先回顾下它的用法,具体用法请参照<Spark Streaming编程指南>. Example代码分析 val ssc = )); // 获得一个DStream负责连接 监听端口:地址 val lines = ssc.socketTextStream(serverIP, serverPort); // 对每一行数据执行Split操作 val words = lines.flatMap(_.split(" ")); // 统计w
spark streaming 实例
spark-streaming读hdfs,统计文件中单词数量,并写入mysql package com.yeliang; import java.sql.Connection; import java.sql.Statement; import java.util.Arrays; import java.util.Iterator; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaPairRDD; i
Spark GraphX实例(1)
Spark GraphX是一个分布式的图处理框架.社交网络中,用户与用户之间会存在错综复杂的联系,如微信.QQ.微博的用户之间的好友.关注等关系,构成了一张巨大的图,单机无法处理,只能使用分布式图处理框架处理,Spark GraphX就是一种分布式图处理框架. 1. POM文件 在项目的pom文件中加上Spark GraphX的包: <dependency> <groupId>org.apache.spark</groupId> <artifactId>sp
朴素贝叶斯算法原理及Spark MLlib实例(Scala/Java/Python)
朴素贝叶斯 算法介绍: 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法. 朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,在没有其它可用信息下,我们会选择条件概率最大的类别作为此待分类项应属的类别. 朴素贝叶斯分类的正式定义如下: 1.设 为一个待分类项,而每个a为x的一个特征属性. 2.有类别集合 . 3.计算 . 4.如果 ,则 . 那么现在的关键就是如何计算第3步中的各个条件概率.我们可以这么做: 1.找到一个已知分类的待分类项集合,这
《OD大数据实战》Spark入门实例
一.环境搭建 1. 编译spark 1.3.0 1)安装apache-maven-3.0.5 2)下载并解压 spark-1.3.0.tgz 3)修改make-distribution.sh VERSION= SCALA_VERSION=2.10 SPARK_HADOOP_VERSION=-cdh5.3.6 SPARK_HIVE= #VERSION=$(>/dev/) #SPARK_HADOOP_VERSION=$(>/dev/null\ # | grep -v "INFO&quo
spark groupByKey().mapValues
>>> rdd = sc.parallelize([("bone", 231), ("bone", 21213), ("jack",1)]) >>> rdd.groupByKey().map(lambda x: sum(x[1])).collect()[1, 21444]>>> rdd.groupByKey().map(lambda x: (x[0],sum(x[1]))).collect()
spark groupByKey 也是可以filter的
>>> v=sc.parallelize(["one", "two", "two", "three", "three", "three"]) >>> v2=v.map(lambda x: (x,1)) >>> v2.collect() [('one', 1), ('two', 1), ('two', 1), ('three', 1),
Spark分区实例(teacher)
package URL1 import org.apache.spark.Partitioner import scala.collection.mutable class MyPartitioner(val num:Array[String]) extends Partitioner{ val parMap=new mutable.HashMap[String,Int]() for(i<-num){ parMap.put(i,count) count += } //分区数目 override
Spark GraphX实例(3)
7. 图的聚合操作 图的聚合操作主要的方法有: (1) Graph.mapReduceTriplets():该方法有一个mapFunc和一个reduceFunc,mapFunc对图中的每一个EdgeTriplet进行处理,生成一个或者多个消息,并且将这些消息发送个Edge的一个或者两个顶点,reduceFunc对发送到每一个顶点上的消息进行合并,生成最终的消息,最后返回一个VertexRDD(不包括没有收到消息的顶点): (2) Graph.pregel():该方法采用BSP模型,包括三个函数v
Spark GraphX实例(2)
5. 图的转换操作 图的转换操作主要有以下的方法: (1) Graph.mapVertices():对图的顶点进行转换,返回一张新图: (2) Graph.mapEdges():对图的边进行转换,返回一张新图. 代码: // 转换操作 println("*************************************************************") println("转换操作") println("**************
利用Scala语言开发Spark应用程序
Spark内核是由Scala语言开发的,因此使用Scala语言开发Spark应用程序是自然而然的事情.如果你对Scala语言还不太熟悉,可 以阅读网络教程A Scala Tutorial for Java Programmers或者相关Scala书籍进行学习. 本文将介绍3个Scala Spark编程实例,分别是WordCount.TopK和SparkJoin,分别代表了Spark的三种典型应用. 1. WordCount编程实例 WordCount是一个最简单的分布式应用实例,主要功能是统计输
Spark Streaming 入门指南
这篇博客帮你开始使用Apache Spark Streaming和HBase.Spark Streaming是核心Spark API的一个扩展,它能够处理连续数据流. Spark Streaming是什么? 首先,Spark Streaming是什么?数据流是数据连续到来的无限序列.Streaming划分连续流动的输入数据成离散单元以便处理.流处理是对流数据的低延迟处理和分析.Spark Streaming是核心Spark API的一个扩展,能够允许对实时数据的可扩展,高吞吐量,容错流处理.Sp
《Spark大数据处理:技术、应用与性能优化 》
基本信息 作者: 高彦杰 丛书名:大数据技术丛书 出版社:机械工业出版社 ISBN:9787111483861 上架时间:2014-11-5 出版日期:2014 年11月 开本:16开 页码:255 版次:1-1 所属分类: 计算机 > 数据库 > 数据库存储与管理 编辑推荐 根据最新技术版本,系统.全面.详细讲解Spark的各项功能使用.原理机制.技术细节.应用方法.性能优化,已经BDAS生态系统的相关技术. 内容简介 书籍计算机书籍 这是一本依据最新技术版本,系统.全面.详细讲解Spark
Spark学习体系
底理解Spark,能够分为以下几个层次. 1 Spark基础篇 1.1 Spark生态和安装部署 在安装过程中,理解其基本操作步骤. 安装部署 Spark安装简单介绍 Spark的源代码编译 Spark Standalone安装 Spark Standalone HA安装 Spark应用程序部署工具spark-submit Spark生态 Spark(内存计算框架) SparkSteaming(流式计算框架) Spark SQL(ad-hoc) Mllib(Machine Learning) G
热门专题
copy 身份证号码 科学计数 pandas
vcenter6忘记密码
mt5 datetime 转换成周几
phpStudy 2014提权
macpython怎么读取文件
原生js实现表格内容增删改查
hive get_json_object 指定 类型
Android简单计算器
物理机安装centos7黑屏
右键增加创建xmind
luogu 树上倍增
linux图形化管理工具
ubuntu anaconda激活
fastadmin 获取path参数
如何获得PDF中的Radiobutton数量
html 通过坐标确定控件
dht11温湿度传感器代码
企业微信触发云平台ip拦截列表
.net action设置匿名访问无效
js将字符串转为json格式展示