首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
spark mappartitions实现
2024-09-02
java实现spark常用算子之mapPartitionsWithIndex
import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.api.java.JavaSparkContext;import org.apache.spark.api.java.function.Function2;import org.apache.spark.api.java.function.VoidFunction; import java.util.
spark中map与mapPartitions区别
在spark中,map与mapPartitions两个函数都是比较常用,这里使用代码来解释一下两者区别 import org.apache.spark.{SparkConf, SparkContext} import scala.collection.mutable.ArrayBuffer object MapAndPartitions { def main(args: Array[String]): Unit = { val sc = new SparkContext(new SparkCon
spark map和mapPartitions的区别
package dayo1 import org.apache.spark.{SparkConf, SparkContext} import scala.collection.mutable.ArrayBuffer object MapAndPartitions { def main(args: Array[String]): Unit = { val cof = new SparkConf ().setAppName ( this.getClass.getSimpleName ).setMas
java实现spark常用算子之mapPartitions
import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.api.java.JavaSparkContext;import org.apache.spark.api.java.function.FlatMapFunction;import org.apache.spark.api.java.function.VoidFunction;import java.
Spark API 之 map、mapPartitions、mapValues、flatMap、flatMapValues详解
原文地址:https://blog.csdn.net/helloxiaozhe/article/details/80492933 1.创建一个RDD变量,通过help函数,查看相关函数定义和例子: >>> a = sc.parallelize([(1,2),(3,4),(5,6)]) >>> a ParallelCollectionRDD[21] at parallelize at PythonRDD.scala:475 >>> help(a.map)
spark小技巧-mapPartitions
与map方法类似,map是对rdd中的每一个元素进行操作,而mapPartitions(foreachPartition)则是对rdd中的每个分区的迭代器进行操作.如果在map过程中需要频繁创建额外的对象(例如将rdd中的数据通过jdbc写入数据库,map需要为每个元素创建一个链接而mapPartition为每个partition创建一个链接),则mapPartitions效率比map高的多. SparkSql或DataFrame默认会对程序进行mapPartition的优化. Demo 实现将
Spark 学习笔记之 map/flatMap/filter/mapPartitions/mapPartitionsWithIndex/sample
map/flatMap/filter/mapPartitions/mapPartitionsWithIndex/sample:
spark中map和mapPartitions算子的区别
区别: 1.map是对rdd中每一个元素进行操作 2.mapPartitions是对rdd中每个partition的迭代器进行操作 mapPartitions优点: 1.若是普通map,比如一个partition中有一万条数据,那么function要执行一万次,而使用mapPartions,一个task只执行一次function,function一次接收所有数据,只执行一次,性能高 2.若在map中需要频繁创建额外对象(如将rdd的数据通过jdbc写入数据库,map需要为每条数据创建一个链接,m
Spark算子--mapPartitions和mapPartitionsWithIndex
mapPartitions--Transformation类算子 代码示例 result mapPartitionsWithIndex--Transformation类算子 代码示例 result
Spark踩坑记——Spark Streaming+Kafka
[TOC] 前言 在WeTest舆情项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark streaming从kafka中不断拉取数据进行词频统计.本文首先对spark streaming嵌入kafka的方式进行归纳总结,之后简单阐述Spark streaming+kafka在舆情项目中的应用,最后将自己在Spark Streaming+kafka的实际优化中的一些经验进行归纳总结.(如有任何纰漏
图解Spark API
初识spark,需要对其API有熟悉的了解才能方便开发上层应用.本文用图形的方式直观表达相关API的工作特点,并提供了解新的API接口使用的方法.例子代码全部使用python实现. 1. 数据源准备 准备输入文件: $ cat /tmp/in apple bag bag cat cat cat 启动pyspark: $ ./spark/bin/pyspark 使用textFile创建RDD: >>> txt = sc.textFile("file:///tmp/in"
Spark Streaming+Kafka
Spark Streaming+Kafka 前言 在WeTest舆情项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark streaming从kafka中不断拉取数据进行词频统计.本文首先对spark streaming嵌入kafka的方式进行归纳总结,之后简单阐述Spark streaming+kafka在舆情项目中的应用,最后将自己在Spark Streaming+kafka的实际优化中的一些
spark 快速入门 java API
Spark的核心就是RDD,对SPARK的使用入门也就是对RDD的使用,包括action和transformation 对于Java的开发者,单单看文档根本是没有办法理解每个API的作用的,所以每个SPARK的新手,最好按部就班直接学习scale, 那才是一个高手的必经之路,但是由于项目急需使用,没有闲工夫去学习一门语言,只能从JAVA入门的同学, 福利来了.... 对API的解释: 1.1 transform l map(func):对调用map的RDD数据集中的每个element都使用
Spark算子选择策略
摘要 1.使用reduceByKey/aggregateByKey替代groupByKey 2.使用mapPartitions替代普通map 3.使用foreachPartitions替代foreach 4.使用filter之后进行coalesce操作 5.使用repartitionAndSortWithinPartitions替代repartition与sort类操作 6.使用broadcast使各task共享同一Executor的集合替代算子函数中各task传送一份集合 7.使用相同分区方
[大数据之Spark]——Transformations转换入门经典实例
Spark相比于Mapreduce的一大优势就是提供了很多的方法,可以直接使用:另一个优势就是执行速度快,这要得益于DAG的调度,想要理解这个调度规则,还要理解函数之间的依赖关系. 本篇就着重描述下Spark提供的Transformations方法. 依赖关系 宽依赖和窄依赖 窄依赖(narrow dependencies) 窄依赖是指父RDD仅仅被一个子RDD所使用,子RDD的每个分区依赖于常数个父分区(O(1),与数据规模无关). 输入输出一对一的算子,且结果RDD的分区结构不变.主要是ma
Spark官方文档 - 中文翻译
Spark官方文档 - 中文翻译 Spark版本:1.6.0 转载请注明出处:http://www.cnblogs.com/BYRans/ 1 概述(Overview) 2 引入Spark(Linking with Spark) 3 初始化Spark(Initializing Spark) 3.1 使用Spark Shell(Using the Shell) 4 弹性分布式数据集(RDDs) 4.1 并行集合(Parallelized Collections) 4.2 外部数据库(Externa
【原】Learning Spark (Python版) 学习笔记(二)----键值对、数据读取与保存、共享特性
本来应该上周更新的,结果碰上五一,懒癌发作,就推迟了 = =.以后还是要按时完成任务.废话不多说,第四章-第六章主要讲了三个内容:键值对.数据读取与保存与Spark的两个共享特性(累加器和广播变量). 键值对(PaiRDD) 1.创建 #在Python中使用第一个单词作为键创建一个pairRDD,使用map()函数 pairs = lines.map(lambda x:(x.split(" ")[0],x)) 2.转化(Transformation) 转化操作很多,有reduceByK
Spark机器学习读书笔记-CH05
5.2.从数据中提取合适的特征 [root@demo1 ch05]# sed 1d train.tsv > train_noheader.tsv[root@demo1 ch05]# lltotal 42920-rw-r--r-- 1 root root 21972457 Jan 31 15:03 train_noheader.tsv-rw-r--r-- 1 root root 21972916 Jan 31 15:00 train.tsv[root@demo1 ch05]# hdfs dfs -
【转载】 Spark性能优化指南——基础篇
转自:http://tech.meituan.com/spark-tuning-basic.html?from=timeline 前言 开发调优 调优概述 原则一:避免创建重复的RDD 原则二:尽可能复用同一个RDD 原则三:对多次使用的RDD进行持久化 原则四:尽量避免使用shuffle类算子 原则五:使用map-side预聚合的shuffle操作 原则六:使用高性能的算子 原则七:广播大变量 原则八:使用Kryo优化序列化性能 原则九:优化数据结构 资源调优 调优概述 Spark作业基本运行
2-Spark高级数据分析-第二章 用Scala和Spark进行数据分析
数据清洗时数据科学项目的第一步,往往也是最重要的一步. 本章主要做数据统计(总数.最大值.最小值.平均值.标准偏差)和判断记录匹配程度. Spark编程模型 编写Spark程序通常包括一系列相关步骤: 1. 在输入数据集上定义一组转换. 2. 调用action,用以将转换后的数据集保存到持久存储上,或者把结果返回到驱动程序的本地内存. 3. 运行本地计算,本地计算处理分布式计算的结果.本地计算有助于你确定下一步的转换和action. 2.4 小试牛刀:Spark shell和SparkConte
Spark RDD API详解(一) Map和Reduce
RDD是什么? RDD是Spark中的抽象数据结构类型,任何数据在Spark中都被表示为RDD.从编程的角度来看,RDD可以简单看成是一个数组.和普通数组的区别是,RDD中的数据是分区存储的,这样不同分区的数据就可以分布在不同的机器上,同时可以被并行处理.因此,Spark应用程序所做的无非是把需要处理的数据转换为RDD,然后对RDD进行一系列的变换和操作从而得到结果.本文为第一部分,将介绍Spark RDD中与Map和Reduce相关的API中. 如何创建RDD? RDD可以从普通数组创建出
热门专题
js convertToHtml 转换复杂word
java web jar 项目的发布
postman获取接口的响应字段
SQLSERVER排查CPU占用高的情况
启动中文输入法有哪三种方法
KCL和KVL定律的内容是什么
python 对列表进行upper
创建的线程为什么会结束while(true)
idea 少了个svn
linux NFS pxe引导
bat 删除 .ds_store
使用echo命令在“姓名目录”中建立文件index.html
hashcat 显示攻击内存0M
Unity插件实现对话
itest 测试管理系统 怎么样
oracle临时表 for
备份UBUNTU成ISO
charles 修改返回数据
codeblocks怎么复制粘贴代码
gpt分区硬盘esp分区重建引导