基于Spark Mllib的文本分类 文本分类是一个典型的机器学习问题,其主要目标是通过对已有语料库文本数据训练得到分类模型,进而对新文本进行类别标签的预测.这在很多领域都有现实的应用场景,如新闻网站的新闻自动分类,垃圾邮件检测,非法信息过滤等.本文将通过训练一个手机短信样本数据集来实现新数据样本的分类,进而检测其是否为垃圾消息,基本步骤是:首先将文本句子转化成单词数组,进而使用 Word2Vec 工具将单词数组转化成一个 K 维向量,最后通过训练 K 维向量样本数据得到一个前馈神经网络模型,以
val path = "/usr/data/lfw-a/*" val rdd = sc.wholeTextFiles(path) val first = rdd.first println(first) val files = rdd.map { case (fileName, content) => fileName.replace("file:", "") } println(files.first)println(files.coun
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .机器学习概念 1.1 机器学习的定义 在维基百科上对机器学习提出以下几种定义: l“机器学习是一门人工智能的科学,该领域的主要研究对象是人工智能,特别是如何在经验学习中改善具体算法的性能”. l“机器学习是对能通过经验自动改进的计算机算法的研究”. l“机器学习是用数据或以往的经验,以此优化计算机程序的性能标准.” 一种经常引用的英文定义是:A computer program is said t
话不多说.直接上代码咯.欢迎交流. /** * Created by whuscalaman on 1/7/16. */import org.apache.spark.{SparkConf, SparkContext}import org.apache.spark.mllib.classification.SVMWithSGDimport org.apache.spark.mllib.linalg.Vectorsimport org.apache.spark.mllib.regression.L