spark sql中支持sechema合并的操作. 直接上官方的代码吧. val sqlContext = new org.apache.spark.sql.SQLContext(sc) // sqlContext from the previous example is used in this example. // This is used to implicitly convert an RDD to a DataFrame. import sqlContext.implicits._
转载自:https://blog.csdn.net/u012297062/article/details/52227909 UDF: User Defined Function,用户自定义的函数,函数的输入是一条具体的数据记录,实现上讲就是普通的Scala函数:UDAF:User Defined Aggregation Function,用户自定义的聚合函数,函数本身作用于数据集合,能够在聚合操作的基础上进行自定义操作: 实质上讲,例如说UDF会被Spark SQL中的Catalyst封装成为E
Spark SQL中出现 CROSS JOIN 问题解决 1.问题显示如下所示: Use the CROSS JOIN syntax to allow cartesian products between these relation 2.原因: Spark 2.x版本中默认不支持笛卡尔积操作 3.解决方案: 通过参数spark.sql.crossJoin.enabled开启,方式如下: spark.conf.set("spark.sql.crossJoin.enabled"
spark 2.4 spark sql中执行 set hive.exec.max.dynamic.partitions=10000; 后再执行sql依然会报错: org.apache.hadoop.hive.ql.metadata.HiveException: Number of dynamic partitions created is 1001, which is more than 1000. To solve this try to set hive.exec.max.dynamic.p
首先看个Not in Subquery的SQL: // test_partition1 和 test_partition2为Hive外部分区表 select * from test_partition1 t1 where t1.id not in (select id from test_partition2); 对应的完整的逻辑计划和物理计划为: == Parsed Logical Plan == 'Project [*] +- 'Filter NOT 't1.id IN (list#3 []
今天突然想到了数据库中的行专列与列转行,还不熟悉,在上网看了一下然后就自己写了个例子. 数据库表示这样滴! //全部查询出来SELECT (case type when 'MySql数据库' then id else NULL END) as 'MySql数据库', (case type when 'SqlServer数据库' then id else NULL END) as 'SqlServer数据库', (case type when 'CSharp' then id else NULL