当使用sparkstreaming处理流式数据的时候,它的数据源搭档大部分都是Kafka,尤其是在互联网公司颇为常见. 当他们集成的时候我们需要重点考虑就是如果程序发生故障,或者升级重启,或者集群宕机,它究竟能否做到数据不丢不重呢? 也就是通常我们所说的高可靠和稳定性,通常框架里面都带有不同层次的消息保证机制,一般来说有三种就是: at most once 最多一次 at least once 最少一次 exactly once 准确一次 在storm里面是通过ack和Trident,在spa
前言 最近在搭一个离线Hadoop + 实时SparkStreaming的日志处理系统,然后发现基本上网上的这种系统都集成了kafka. 自己对kafka有一点点的认识,之前看过官网文档,用过一次,就了解到它是个消息队列.好像说是比起其他的消息队列,对多subscriber更友好. 所以google了一些kafka的应用场景,来加深一下理解. Use Cases Kafka documentation - use cases Messaging Kafka works well as a rep