1. 聚类问题 所谓聚类问题,就是给定一个元素集合D,其中每个元素具有n个可观察属性,使用某种算法将D划分成k个子集,要求每个子集内部的元素之间相异度尽可能低,而不同子集的元素相异度尽可能高. 2. K-均值算法简介 k-means算法,也被称为k-平均或k-均值,是一种得到最广泛使用的聚类算法. 它是将各个聚类子集内的所有数据样本的均值作为该聚类的代表点, 算法的主要思想 是通过迭代过程把数据集划分为不同的类别,使得评价聚类性能的准则函数达到最优,从而使生成的每个聚类内紧凑,类间独立.这一算法